12,420 research outputs found

    Diffuse-interface model for nanopatterning induced by self-sustained ion etch masking

    Full text link
    We construct a simple phenomenological diffuse-interface model for composition-induced nanopatterning during ion sputtering of alloys. In simulations, this model reproduces without difficulties the high-aspect ratio structures and tilted pillars observed in experiments. We investigate the time evolution of the pillar height, both by simulations and by {\it in situ} ellipsometry. The analysis of the simulation results yields a good understanding of the transitions between different growth regimes and supports the role of segregation in the pattern-formation process.Comment: 10 pages, 3 figures; minor revisions with respect to first version; figures nicened; journal ref. adde

    Hybridizing two-step growth mixture model and exploratory factor analysis to examine heterogeneity in nonlinear trajectories

    Full text link
    Empirical researchers are usually interested in investigating the impacts of baseline covariates have when uncovering sample heterogeneity and separating samples into more homogeneous groups. However, a considerable number of studies in the structural equation modeling (SEM) framework usually start with vague hypotheses in terms of heterogeneity and possible reasons. It suggests that (1) the determination and specification of a proper model with covariates is not straightforward, and (2) the exploration process may be computational intensive given that a model in the SEM framework is usually complicated and the pool of candidate covariates is usually huge in the psychological and educational domain where the SEM framework is widely employed. Following \citet{Bakk2017two}, this article presents a two-step growth mixture model (GMM) that examines the relationship between latent classes of nonlinear trajectories and baseline characteristics. Our simulation studies demonstrate that the proposed model is capable of clustering the nonlinear change patterns, and estimating the parameters of interest unbiasedly, precisely, as well as exhibiting appropriate confidence interval coverage. Considering the pool of candidate covariates is usually huge and highly correlated, this study also proposes implementing exploratory factor analysis (EFA) to reduce the dimension of covariate space. We illustrate how to use the hybrid method, the two-step GMM and EFA, to efficiently explore the heterogeneity of nonlinear trajectories of longitudinal mathematics achievement data.Comment: Draft version 1.6, 08/08/2020. This paper has not been peer reviewed. Please do not copy or cite without author's permissio

    Stopping power of hot QCD plasma

    Full text link
    The partonic energy loss has been calculated taking both the hard and soft contributions for all the 2→22 \to 2 processes, revealing the importance of the individual channels. Cancellation of the intermediate separation scale has been exhibited. Subtleties related to the identical final state partons have properly been taken into account. The estimated collisional loss is compared with its radiative counter part. We show that there exists a critical energy (EcE_c) below which the collisional loss is more than its radiative counterpart. In addition, we present closed form formulas for both the collision probabilities and the stopping power (dE/dxdE/dx)Comment: revised version, section added, 9pages with 5 figure

    How to identify and characterize strongly correlated topological semimetals

    Full text link
    How strong correlations and topology interplay is a topic of great current interest. In this perspective paper, we focus on correlation-driven gapless phases. We take the time-reversal symmetric Weyl semimetal as an example because it is expected to have clear (albeit nonquantized) topological signatures in the Hall response and because the first strongly correlated representative, the noncentrosymmetric Weyl-Kondo semimetal Ce3_3Bi4_4Pd3_3, has recently been discovered. We summarize its key characteristics and use them to construct a prototype Weyl-Kondo semimetal temperature-magnetic field phase diagram. This allows for a substantiated assessment of other Weyl-Kondo semimetal candidate materials. We also put forward scaling plots of the intrinsic Berry-curvature-induced Hall response vs the inverse Weyl velocity -- a measure of correlation strength, and vs the inverse charge carrier concentration -- a measure of the proximity of Weyl nodes to the Fermi level. They suggest that the topological Hall response is maximized by strong correlations and small carrier concentrations. We hope that our work will guide the search for new Weyl-Kondo semimetals and correlated topological semimetals in general, and also trigger new theoretical work.Comment: 22 pages, 5 figures, 2 table

    Z_3-graded exterior differential calculus and gauge theories of higher order

    Full text link
    We present a possible generalization of the exterior differential calculus, based on the operator d such that d^3=0, but d^2\not=0. The first and second order differentials generate an associative algebra; we shall suppose that there are no binary relations between first order differentials, while the ternary products will satisfy the cyclic relations based on the representation of cyclic group Z_3 by cubic roots of unity. We shall attribute grade 1 to the first order differentials and grade 2 to the second order differentials; under the associative multiplication law the grades add up modulo 3. We show how the notion of covariant derivation can be generalized with a 1-form A, and we give the expression in local coordinates of the curvature 3-form. Finally, the introduction of notions of a scalar product and integration of the Z_3-graded exterior forms enables us to define variational principle and to derive the differential equations satisfied by the curvature 3-form. The Lagrangian obtained in this way contains the invariants of the ordinary gauge field tensor F_{ik} and its covariant derivatives D_i F_{km}.Comment: 13 pages, no figure

    Mesoscopic molecular ions in Bose-Einstein condensates

    Get PDF
    We study the possible formation of large (mesoscopic) molecular ions in an ultracold degenerate bosonic gas doped with charged particles (ions). We show that the polarization potentials produced by the ionic impurities are capable of capturing hundreds of atoms into loosely bound states. We describe the spontaneous formation of these hollow molecular ions via phonon emission and suggest an optical technique for coherent stimulated transitions of free atoms into a specific bound state. These results open up new interesting possibilities for manipulating tightly confined ensembles.Comment: 4 pages (two-columns), 2 figure

    Percolation model for structural phase transitions in Li1−x_{1-x}Hx_xIO3_3 mixed crystals

    Full text link
    A percolation model is proposed to explain the structural phase transitions found in Li1−x_{1-x}Hx_xIO3_3 mixed crystals as a function of the concentration parameter xx. The percolation thresholds are obtained from Monte Carlo simulations on the specific lattices occupied by lithium atoms and hydrogen bonds. The theoretical results strongly suggest that percolating lithium vacancies and hydrogen bonds are indeed responsible for the solid solution observed in the experimental range 0.22<x<0.360.22 < x < 0.36.Comment: 4 pages, 2 figure
    • …
    corecore