462 research outputs found

    Degradation mechanisms in organic photovoltaic devices

    Get PDF
    \u3cp\u3eIn the present review, the main degradation mechanisms occurring in the different layer stacking (i.e. photoactive layer, electrode, encapsulation film, interconnection) of polymeric organic solar cells and modules are discussed. Bulk and interfacial, as well as chemical and physical degradation mechanisms are reviewed, as well as their implications and external or internal triggers. Decay in I-V curves in function of time is usually due to the combined action of sequential and interrelated mechanisms taking place at different locations of the device, at specific kinetics. This often makes the identification of specific root causes of degradation challenging in non-model systems. Additionally, constant development and refinement in terms of type and combination of materials and processes render the ranking of degradation mechanisms as a function of their probability of occurrence and their detection challenging. However, it clearly appears that for the overall stability of organic photovoltaic devices, the actual photoactive layer, as well as the properties of the barrier and substrate (e.g. cut of moisture and oxygen ingress, mechanical integrity), remain critical. Interfacial stability is also crucial, as a modest degradation at the level of an interface can quickly and significantly influence the overall device properties.\u3c/p\u3

    The hospitals/residents problem

    Get PDF
    No abstract available

    Pediatric pacemaker infections: Twenty years of experience

    Get PDF
    AbstractObjective: We sought to evaluate possible predictors of early and late pacemaker infections in children. Methods: A review was performed of all pacemakers implanted in children at The Children's Hospital of Philadelphia between 1982 and 2001. Infections were classified as superficial cellulitus, deep pacemaker pocket infection necessitating removal, or positive blood culture without an identifiable source. Results: A total of 385 pacemakers (224 epicardial and 161 endocardial) were implanted in 267 patients at 8.4 ± 6.2 years. All 2141 outpatient visits were reviewed (median follow-up, 29.4 months; range, 2-232 months). There were 30 (7.8%) pacemaker infections: 19 (4.9%) superficial infections; 9 (2.3%) pocket infections; and 2 (0.5%) isolated positive blood cultures. All superficial infections resolved with intravenous antibiotics. The median time from implantation to infection was 16 days (range, 2 days-5 years). Only 1 deep infection occurred after primary pacemaker implantation. Six patients with deep infections were pacemaker dependent and were successfully managed with intravenous antibiotics, followed by lead-generator removal and implantation of a new pacemaker in a remote location. In univariate analyses trisomy 21 (relative risk, 3.9; P <.01), pacemaker revisions (relative risk, 2.5; P <.01), and single-chamber devices (relative risk, 2.4; P <.05) were identified as predictors of infection. However, in multivariate analyses only trisomy 21 and pacemaker revisions were predictors. Conclusions: The incidences of superficial and deep pacemaker infections were 4.9% and 2.3%, respectively. Trisomy 21 and pacemaker revisions were significant risk factors in the development of infection after pacemaker implantation. For primary pacemaker implantation, the risk of infection requiring system removal is low (0.3%).J Thorac Cardiovasc Surg 2002;124:821-

    Integer programming methods for special college admissions problems

    Get PDF
    We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and also for other ones

    Book Reviews

    Get PDF
    Book Reviews: Unconquerable Rebel: Robert W. Wilcox And Hawaiian Politics, 1880 - 1903 by Ernest Andrade, Jr.; Women And Children First: the Life And Times of Elsie Wilcox of Kaua'i by Judith Dean Gething Hughes; the Shipmans of East Hawai'i by Emmett Cahill; Shaping History: the Role of Newspapers In Hawai'i by Helen Geracimos Chapin; Waikiki 100 B.C. To 1900 A.D.: An Untold Story by George S. Kanahele; Surveying the Mahele: Mapping the Hawaiian Land Revolution by Riley M. Moffat And Gary L. Fitzpatrick; the Filipino Piecemeal Sugar Strike of 1924-1925 by John E. Reinecke; Sugar Water: Hawaii's Plantation Ditches by Carol Wilcox; Who Runs the University? the Politics of Higher Education In Hawaii, 1985 - 1992 by David Youn

    Popular matchings in the marriage and roommates problems

    Get PDF
    Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M′ with the property that more applicants prefer their allocation in M′ to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases
    corecore