56 research outputs found

    Estimating 3-D Respiratory Motion From Orbiting Views by Tomographic Image Registration

    Full text link
    Respiratory motion remains a significant source of errors in treatment planning for the thorax and upper abdomen. Recently, we proposed a method to estimate two-dimensional (2-D) object motion from a sequence of slowly rotating X-ray projection views, which we called deformation from orbiting views (DOVs). In this method, we model the motion as a time varying deformation of a static prior of the anatomy. We then optimize the parameters of the motion model by maximizing the similarity between the modeled and actual projection views. This paper extends the method to full three-dimensional (3-D) motion and cone-beam projection views. We address several practical issues for using a cone-beam computed tomography (CBCT) scanner that is integrated in a radiotherapy system, such as the effects of Compton scatter and the limited gantry rotation for one breathing cycle. We also present simulation and phantom results to illustrate the performance of this method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85995/1/Fessler38.pd

    A Simplified Motion Model for Estimating Respiratory Motion from Orbiting Views

    Full text link
    We have shown previously that the internal motion caused by a patient’s breathing can be estimated from a sequence of slowly rotating 2D cone-beam X-ray projection views and a static prior of of the patient’s anatomy.1, 2 The estimator iteratively updates a parametric 3D motion model so that the modeled projection views of the deformed reference volume best match the measured projection views. Complicated motion models with many degrees of freedom may better describe the real motion, but the optimizations assiciated with them may overfit noise and may be easily trapped by local minima due to a large number of parameters. For the latter problem, we believe it can be solved by offering the optimization algorithm a good starting point within the valley containing the global minimum point. Therefore, we propose to start the motion estimation with a simplified motion model, in which we assume the displacement of each voxel at any time is proportional to the full movement of that voxel from extreme exhale to extreme inhale. We first obtain the full motion by registering two breathhold CT volumes at end-expiration and end-inspiration. We then estimate a sequence of scalar displacement proportionality parameters. Thus the goal simplifies to finding a motion amplitude signal. This estimation problem can be solved quickly using the exhale reference volume and projection views with coarse (downsampled) resolution, while still providing acceptable estimation accuracy. The estimated simple motion then can be used to initialize a more complicated motion estimator.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85923/1/Fessler224.pd

    Respiratory Motion Estimation from Slowly Rotating X-Ray Projections

    Full text link
    As radiotherapy has become increasingly conformal, geometric uncertainties caused by breathing and organ motion have become an important issue. Accurate motion estimates may lead to improved treatment planning and dose calculation in radiation therapy. However, respiratory motion is difficult to study by conventional X-ray CT imaging since object motion causes inconsistent projection views leading to artifacts in reconstructed images. We propose to estimate the parameters of a nonrigid motion model from a set of projection views of the thorax that are acquired using a slowly rotating cone-beam CT scanner, such as a radiotherapy simulator. We use a conventionally reconstructed 3D thorax image, acquired by breath-hold CT, as a reference volume. We represent respiratory motion using a flexible parametric nonrigid motion model based on B-splines. The motion parameters are estimated by optimizing a regularized cost function that includes the squared error between the measured projection views and the reprojections of the deformed reference image. Preliminary 2D simulation results show that there is good agreement between the estimated motion and the true motion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85878/1/Fessler197.pd

    Estimating 3D Respiratory Motion from Orbiting Views

    Full text link
    This paper describes a method for estimating 3D respiratory motion so as to characterize tumor motion. This method uses two sets of measurements. One is a reference thorax volume obtained from a conventional fast CT scanner under breath-hold condition. The other is a sequence of projection views of the same patient (acquired at treatment time) using a slowly rotating cone-beam system (1 minute per rotation) during free breathing. We named this method deformation from orbiting views (DOV). Breathing motion over the entire acquisition period is estimated by deforming the reference volume through time so that its projections best match the measured projection views. The nonrigid breathing motion is described by a B-spline based deformation model. The parameters of this model are estimated by minimizing a regularized squared error cost function, using a conjugate gradient descent algorithm. Performance of this approach was evaluated by simulation. Results showed good agreement between the estimated and synthesized motion, with a mean absolute error of 1.63 mm. Relatively larger errors tended to occur in uniform regions, which would not have significant effects on generating deformed volumes based on the estimated motion. The results indicate that it is feasible to estimate realistic nonrigid motion from a sequence of slowly rotating cone beam projection views.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85996/1/Fessler214.pd

    Iterative Sorting for 4DCT Images Based ON Internal Anatomy Motion

    Full text link
    Geometric uncertainties caused by respiratory motion complicate radiotherapy treatment planning. Therefore 4D CT imaging is important in characterizing anatomy motion during breathing. Current 4D CT imaging techniques using multislice CT scanners involve multiple scans at several axial positions and retrospective sorting processes. Most sorting methods are based on externally monitored signals recorded by external monitoring instruments, which may not always accurately catch the actual breathing status and may lead to severe discontinuity artifacts in the sorted CT volumes. We propose a method to reconstruct time-resolved CT volumes based on internal motion to avoid the inaccuracies caused by external breathing signals. In our method, we iteratively sort the 4D CT slices using internal motion based breathing indices. In each iteration, respiratory motion is estimated by updating a motion model to best match a deformed reference volume to each moving multi-slice sub-volumes. The breathing indices as well as the reference volumes are refined for each iteration based on the currently estimated respiratory motion. An example is presented to illustrate the feasibility of our 4D CT sorting method without using any external motion monitoring systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85803/1/Fessler229.pd

    Biocompatibility of subretinal parylene-based Ti/Pt microelectrode array in rabbit for further artificial vision studies

    Get PDF
    To evaluate the biocompatibility of subretinal implanted parylene-based Ti/Pt microelectrode arrays (MEA). Eyes were enucleated 3 months after MEAs were implanted into the subretinal space of rabbits. Morphological changes of the retinas were investigated by H&E staining. Immunohistochemical staining for glial fibrillary acidic protein and opsin were performed to evaluate changes in Muller cells and photoreceptors in the retinas. Retina tissue around the array remained intact. Photoreceptor degeneration and glial cell activation were observed in the retina overlaying the MEA implant. However, the cells in the inner retinal layers were preserved. Photoreceptor degeneration and glial cell activation at the MEA–retina interface are expected to be a normal reaction to implantation. Material used in this experiment has good biocompatibility within the subretinal environment and is expected to be promising in the further retinal prosthesis studies

    A retrospective and agenda for future research on Chinese outward foreign direct investment

    Get PDF
    Our original paper “The determinants of Chinese Outward Foreign Direct Investment” was the first theoretically based empirical analysis of the phenomenon. It utilised internalisation theory to show that Chinese state-owned firms reacted to home country market imperfections to surmount barriers to foreign entry arising from naivety and the lack of obvious ownership advantages, leveraging institutional factors including favourable policy stimuli. This special theory explained outward foreign direct investment (OFDI) but provided surprises. These included the apparent appetite for risk evinced by these early investors, causing us to conjecture that domestic market imperfections, particularly in the domestic capital market, might be responsible. The article stimulated a massive subsequent, largely successful, research effort on emerging country multinationals. In this Retrospective article we review some of the main strands of research that ensued, for the insight they offer for the theme of our commentary. Our theme is that theoretical development can only come through embracing yet more challenging, different, and new contexts, and we make suggestions for future research directions

    Age- and sex-related changes in fasting plasma glucose and lipoprotein in cynomolgus monkeys

    Get PDF
    BACKGROUND: The age-related dysfunction of glucose and lipid metabolism has a long-standing relationship with cardiovascular and neurodegenerative disease. However, the effects of metabolic dysfunction on men and women are different. Reasons for these sex differences remains unclear. Cynomolgus monkeys have been used, in the past, for the study of human metabolic diseases due to their biologically proximity to humans. Nevertheless, few studies to date have focused on both age- and sex-related differences in glucose and lipid metabolism. The present study was designed to specifically address these questions by using a large cohort of cynomolgus monkeys (N = 1,399) including 433 males and 966 females with ages ranging 4 to 24 years old. METHODS: Fasting plasma glucose (FPG) and lipid parameters including total cholesterol (T-Cho), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured. All these parameters were compared between ages and sexes. RESULTS: Among the entire cohort, age was strongly correlated with levels of FPG, TG and HDL. Consequently, sex-related analysis revealed that females had significantly higher average levels of FPG, T-Cho, TG, HDL-C and LDL-C than their male counterparts. In addition, more female (28.5 %) than male (16 %) monkeys qualified for impaired fasting plasma glucose (IFPG). In those IFPG animals, sex-related differences were also detected i.e. females had significantly increased levels of T-Cho, TG and LDL-C. CONCLUSIONS: The result, for the first time, demonstrated the similarities and differences in detail between male and female cynomolgus monkeys in relationship to age-related glucose and lipoprotein metabolisms, and differences under various physiological conditions. The detailed glucose and lipoprotein profiling should provide additional and important insights for prediabetic conditions. Cynomolgus monkeys appear to be an excellent model for translational research of diabetes and for novel therapeutic strategies testing to overt diabetes
    • …
    corecore