90 research outputs found

    Positive Regulation by GABABR1 Subunit of Leptin Expression through Gene Transactivation in Adipocytes

    Get PDF
    Background: The view that c-aminobutyric acid (GABA) plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GABAergic signaling machineries by adipocytes. Methodology/Principal Findings: GABAB receptor 1 (GABABR1) subunit was constitutively expressed by mouse embryonic fibroblasts differentiated into adipocytes and adipocytic 3T3-L1 cells in culture, as well as mouse white adipose tissue, with no responsiveness to GABA BR ligands. However, no prominent expression was seen with mRNA for GABA BR2 subunit required for heteromeric orchestration of the functional GABABR by any adipocytic cells and tissues. Leptin mRNA expression was significantly and selectively decreased in adipose tissue and embryonic fibroblasts, along with drastically reduced plasma leptin levels, in GABA BR1-null mice than in wild-type mice. Knockdown by siRNA of GABA BR1 subunit led to significant decreases in leptin promoter activity and leptin mRNA levels in 3T3-L1 cells. Conclusions/Significance: Our results indicate that GABABR1 subunit is constitutively expressed by adipocytes to primarily regulate leptin expression at the transcriptional level through a mechanism not relevant to the function as a partner o

    Medical treatment of prolactinomas.

    Get PDF
    Prolactinomas, the most prevalent type of neuroendocrine disease, account for approximately 40% of all pituitary adenomas. The most important clinical problems associated with prolactinomas are hypogonadism, infertility and hyposexuality. In patients with macroprolactinomas, mass effects, including visual field defects, headaches and neurological disturbances, can also occur. The objectives of therapy are normalization of prolactin levels, to restore eugonadism, and reduction of tumor mass, both of which can be achieved in the majority of patients by treatment with dopamine agonists. Given their association with minimal morbidity, these drugs currently represent the mainstay of treatment for prolactinomas. Novel data indicate that these agents can be successfully withdrawn in a subset of patients after normalization of prolactin levels and tumor disappearance, which suggests the possibility that medical therapy may not be required throughout life. Nevertheless, multimodal therapy that involves surgery, radiotherapy or both may be necessary in some cases, such as patients who are resistant to the effects of dopamine agonists or for those with atypical prolactinomas. This Review reports on efficacy and safety of pharmacotherapy in patients with prolactinomas

    Somatostatin Receptor 1 and 5 Double Knockout Mice Mimic Neurochemical Changes of Huntington's Disease Transgenic Mice

    Get PDF
    Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD). However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST) positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5). and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice.This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the pathophysiology of Huntington's disease

    Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine tumours, current aspects and new perspectives

    Get PDF
    Gastroenteropancreatic neuroendocrine tumours (GEP NETs) are rare tumours that present many clinical features

    Management of acromegaly in Latin America: expert panel recommendations

    Get PDF
    Although there are international guidelines orienting physicians on how to manage patients with acromegaly, such guidelines should be adapted for use in distinct regions of the world. A panel of neuroendocrinologists convened in Mexico City in August of 2007 to discuss specific considerations in Latin America. Of major discussion was the laboratory evaluation of acromegaly, which requires the use of appropriate tests and the adoption of local institutional standards. As a general rule to ensure diagnosis, the patient’s GH level during an oral glucose tolerance test and IGF-1 level should be evaluated. Furthermore, to guide treatment decisions, both GH and IGF-1 assessments are required. The treatment of patients with acromegaly in Latin America is influenced by local issues of cost, availability and expertise of pituitary neurosurgeons, which should dictate therapeutic choices. Such treatment has undergone profound changes because of the introduction of effective medical interventions that may be used after surgical debulking or as first-line medical therapy in selected cases. Surgical resection remains the mainstay of therapy for small pituitary adenomas (microadenomas), potentially resectable macroadenomas and invasive adenomas causing visual defects. Radiotherapy may be indicated in selected cases when no disease control is achieved despite optimal surgical debulking and medical therapy, when there is no access to somatostatin analogues, or when local issues of cost preclude other therapies. Since not all the diagnostic tools and treatment options are available in all Latin American countries, physicians need to adapt their clinical management decisions to the available local resources and therapeutic options

    Somatostatin and dopamine receptors as targets for medical treatment of Cushing's Syndrome

    Get PDF
    Somatostatin (SS) and dopamine (DA) receptors are widely expressed in neuroendocrine tumours that cause Cushing's Syndrome (CS). Increasing knowledge of specific subtype expression within these tumours and the ability to target these receptor subtypes with high-affinity compounds, has driven the search for new SS- or DA-based medical therapies for the various forms of CS. In Cushing's disease, corticotroph adenomas mainly express dopamine receptor subtype 2 (D2) and somatostatin receptor subtype 5 (sst5), whereas sst2is expressed at lower levels. Activation of these receptors can inhibit ACTH-release in primary cultured corticotroph adenomas and compounds that target either sst5(pasireotide, or SOM230) or D2(cabergoline) have shown significant efficacy in subsets of patients in recent clinical studies. Combination therapy, either by administration of both types of compounds separately or by treatment with novel somatostatin-dopamine chimeric molecules (e.g. BIM-23A760), appears to be a promising approach in this respect. In selected cases of Ectopic ACTH-producing Syndrome (EAS), the sst2-preferring compound octreotide is able to reduce cortisol levels effectively. A recent study showed that D2receptors are also significantly expressed in the majority of EAS and that cabergoline may decrease cortisol levels in subsets of these patients. In both normal adrenal tissue as well as in adrenal adenomas and carcinomas that cause CS, sst and DA receptor expression has been demonstrated. Although selected cases of adrenal CS may benefit from sst or DA-targeted treatment, its total contribution to the treatment of these patients is likely to be low as surgery is effective in most cases

    Deconvolution of complex G protein–coupled receptor signaling in live cells using dynamic mass redistribution measurements

    Get PDF
    Label-free biosensor technology based on dynamic mass redistribution (DMR) of cellular constituents promises to translate GPCR signaling into complex optical 'fingerprints' in real time in living cells. Here we present a strategy to map cellular mechanisms that define label-free responses, and we compare DMR technology with traditional second-messenger assays that are currently the state of the art in GPCR drug discovery. The holistic nature of DMR measurements enabled us to (i) probe GPCR functionality along all four G-protein signaling pathways, something presently beyond reach of most other assay platforms; (ii) dissect complex GPCR signaling patterns even in primary human cells with unprecedented accuracy; (iii) define heterotrimeric G proteins as triggers for the complex optical fingerprints; and (iv) disclose previously undetected features of GPCR behavior. Our results suggest that DMR technology will have a substantial impact on systems biology and systems pharmacology as well as for the discovery of drugs with novel mechanisms

    Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers

    No full text
    This article is hosted on a website external to the CBCRA Open Access Archive. Selecting “View/Open” below will launch the full-text article in another browser window.The existence of receptor dimers has been proposed for several G protein-coupled receptors. However, the question of whether G protein-coupled receptor dimers are necessary for activating or modulating normal receptor function is unclear. We address this question with somatostatin receptors (SSTRs) of which there are five distinct subtypes. By using transfected mutant and wild type receptors, as well as endogenous receptors, we provide pharmacological, biochemical, and physical evidence, based on fluorescence resonance energy transfer analysis, that activation by ligand induces SSTR dimerization, both homo- and heterodimerization with other members of the SSTR family, and that dimerization alters the functional properties of the receptor such as ligand binding affinity and agonist-induced receptor internalization and up-regulation. Double label confocal fluorescence microscopy showed that when SSTR1 and SSTR5 subtypes were coexpressed in Chinese hamster ovary-K1 cells and treated with agonist they underwent internalization and were colocalized in cytoplasmic vesicles. SSTR5 formed heterodimers with SSTR1 but not with SSTR4 suggesting that heterodimerization is a specific process that is restricted to some but not all receptor subtype combinations. Direct protein interaction between different members of the SSTR subfamily defines a new level of molecular cross-talk between subtypes of the SSTR and possibly related receptor families

    Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation

    No full text
    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355–365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355–365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization
    corecore