345 research outputs found

    Some generic properties of level spacing distributions of 2D real random matrices

    Full text link
    We study the level spacing distribution P(S)P(S) of 2D real random matrices both symmetric as well as general, non-symmetric. In the general case we restrict ourselves to Gaussian distributed matrix elements, but different widths of the various matrix elements are admitted. The following results are obtained: An explicit exact formula for P(S)P(S) is derived and its behaviour close to S=0 is studied analytically, showing that there is linear level repulsion, unless there are additional constraints for the probability distribution of the matrix elements. The constraint of having only positive or only negative but otherwise arbitrary non-diagonal elements leads to quadratic level repulsion with logarithmic corrections. These findings detail and extend our previous results already published in a preceding paper. For the {\em symmetric} real 2D matrices also other, non-Gaussian statistical distributions are considered. In this case we show for arbitrary statistical distribution of the diagonal and non-diagonal elements that the level repulsion exponent ρ\rho is always ρ=1\rho = 1, provided the distribution function of the matrix elements is regular at zero value. If the distribution function of the matrix elements is a singular (but still integrable) power law near zero value of SS, the level spacing distribution P(S)P(S) is a fractional exponent pawer law at small SS. The tail of P(S)P(S) depends on further details of the matrix element statistics. We explicitly work out four cases: the constant (box) distribution, the Cauchy-Lorentz distribution, the exponential distribution and, as an example for a singular distribution, the power law distribution for P(S)P(S) near zero value times an exponential tail.Comment: 21 pages, no figures, submitted to Zeitschrift fuer Naturforschung

    Statistical properties of the localization measure in a finite-dimensional model of the quantum kicked rotator

    Full text link
    We study the quantum kicked rotator in the classically fully chaotic regime K=10K=10 and for various values of the quantum parameter kk using Izrailev's NN-dimensional model for various N3000N \le 3000, which in the limit NN \rightarrow \infty tends to the exact quantized kicked rotator. By numerically calculating the eigenfunctions in the basis of the angular momentum we find that the localization length L{\cal L} for fixed parameter values has a certain distribution, in fact its inverse is Gaussian distributed, in analogy and in connection with the distribution of finite time Lyapunov exponents of Hamilton systems. However, unlike the case of the finite time Lyapunov exponents, this distribution is found to be independent of NN, and thus survives the limit N=N=\infty. This is different from the tight-binding model of Anderson localization. The reason is that the finite bandwidth approximation of the underlying Hamilton dynamical system in the Shepelyansky picture (D.L. Shepelyansky, {\em Phys. Rev. Lett.} {\bf 56}, 677 (1986)) does not apply rigorously. This observation explains the strong fluctuations in the scaling laws of the kicked rotator, such as e.g. the entropy localization measure as a function of the scaling parameter Λ=L/N\Lambda={\cal L}/N, where L\cal L is the theoretical value of the localization length in the semiclassical approximation. These results call for a more refined theory of the localization length in the quantum kicked rotator and in similar Floquet systems, where we must predict not only the mean value of the inverse of the localization length L\cal L but also its (Gaussian) distribution, in particular the variance. In order to complete our studies we numerically analyze the related behavior of finite time Lyapunov exponents in the standard map and of the 2×\times2 transfer matrix formalism. This paper is extending our recent work.Comment: 12 pages, 9 figures (accepted for publication in Physical Review E). arXiv admin note: text overlap with arXiv:1301.418

    Regular and Irregular States in Generic Systems

    Full text link
    In this work we present the results of a numerical and semiclassical analysis of high lying states in a Hamiltonian system, whose classical mechanics is of a generic, mixed type, where the energy surface is split into regions of regular and chaotic motion. As predicted by the principle of uniform semiclassical condensation (PUSC), when the effective \hbar tends to 0, each state can be classified as regular or irregular. We were able to semiclassically reproduce individual regular states by the EBK torus quantization, for which we devise a new approach, while for the irregular ones we found the semiclassical prediction of their autocorrelation function, in a good agreement with numerics. We also looked at the low lying states to better understand the onset of semiclassical behaviour.Comment: 25 pages, 14 figures (as .GIF files), high quality figures available upon reques

    A mass formula for light mesons from a potential model

    Full text link
    The quark dynamics inside light mesons, except pseudoscalar ones, can be quite well described by a spinless Salpeter equation supplemented by a Cornell interaction (possibly partly vector, partly scalar). A mass formula for these mesons can then be obtained by computing analytical approximations of the eigenvalues of the equation. We show that such a formula can be derived by combining the results of two methods: the dominantly orbital state description and the Bohr-Sommerfeld quantization approach. The predictions of the mass formula are compared with accurate solutions of the spinless Salpeter equation computed with a Lagrange-mesh calculation method.Comment: 5 figure

    Sensitivity of the eigenfunctions and the level curvature distribution in quantum billiards

    Full text link
    In searching for the manifestations of sensitivity of the eigenfunctions in quantum billiards (with Dirichlet boundary conditions) with respect to the boundary data (the normal derivative) we have performed instead various numerical tests for the Robnik billiard (quadratic conformal map of the unit disk) for 600 shape parameter values, where we look at the sensitivity of the energy levels with respect to the shape parameter. We show the energy level flow diagrams for three stretches of fifty consecutive (odd) eigenstates each with index 1,000 to 2,000. In particular, we have calculated the (unfolded and normalized) level curvature distribution and found that it continuously changes from a delta distribution for the integrable case (circle) to a broad distribution in the classically ergodic regime. For some shape parameters the agreement with the GOE von Oppen formula is very good, whereas we have also cases where the deviation from GOE is significant and of physical origin. In the intermediate case of mixed classical dynamics we have a semiclassical formula in the spirit of the Berry-Robnik (1984) surmise. Here the agreement with theory is not good, partially due to the localization phenomena which are expected to disappear in the semiclassical limit. We stress that even for classically ergodic systems there is no global universality for the curvature distribution, not even in the semiclassical limit.Comment: 19 pages, file in plain LaTeX, 15 figures available upon request Submitted to J. Phys. A: Math. Ge

    Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    Full text link
    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.Comment: 18 pages, 8 figures, with 3 additional GIF animations available at http://chaos.fiz.uni-lj.si/~veble/boundary

    Berry-Robnik level statistics in a smooth billiard system

    Full text link
    Berry-Robnik level spacing distribution is demonstrated clearly in a generic quantized plane billiard for the first time. However, this ultimate semi-classical distribution is found to be valid only for extremely small semi-classical parameter (effective Planck's constant) where the assumption of statistical independence of regular and irregular levels is achieved. For sufficiently larger semiclassical parameter we find (fractional power-law) level repulsion with phenomenological Brody distribution providing an adequate global fit.Comment: 10 pages in LaTeX with 4 eps figures include
    corecore