2,539 research outputs found
Mice Infected with Low-virulence Strains of Toxoplasma gondii Lose their Innate Aversion to Cat Urine, Even after Extensive Parasite Clearance
Toxoplasma gondii chronic infection in rodent secondary hosts has been
reported to lead to a loss of innate, hard-wired fear toward cats, its primary
host. However the generality of this response across T. gondii strains and the
underlying mechanism for this pathogen mediated behavioral change remain
unknown. To begin exploring these questions, we evaluated the effects of
infection with two previously uninvestigated isolates from the three major
North American clonal lineages of T. gondii, Type III and an attenuated strain
of Type I. Using an hour-long open field activity assay optimized for this
purpose, we measured mouse aversion toward predator and non-predator urines. We
show that loss of innate aversion of cat urine is a general trait caused by
infection with any of the three major clonal lineages of parasite.
Surprisingly, we found that infection with the attenuated Type I parasite
results in sustained loss of aversion at times post infection when neither
parasite nor ongoing brain inflammation were detectable. This suggests that T.
gondii-mediated interruption of mouse innate aversion toward cat urine may
occur during early acute infection in a permanent manner, not requiring
persistence of parasitecysts or continuing brain inflammation.Comment: 14 pages, 3 figure
The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells.
Thymocytes must bind major histocompatibility complex (MHC) proteins on thymic epithelial cells in order to mature into either CD8+ cytotoxic T cells or CD4+ helper T cells. Thymic precursors express both CD8 and CD4, and it has been suggested that the intracellular signals generated by CD8 or CD4 binding to class I or II MHC, respectively, might influence the fate of uncommitted cells. Here we test the notion that intracellular signaling by CD4 directs the development of thymocytes to a CD4 lineage. A hybrid protein consisting of the CD8 extracellular and transmembrane domains and the cytoplasmic domain of CD4 (CD884) should bind class I MHC but deliver a CD4 intracellular signal. We find that expression of a hybrid CD884 protein in thymocytes of transgenic mice leads to the development of large numbers of class I MHC-specific, CD4 lineage T cells. We discuss these results in terms of current models for CD4 and CD8 lineage commitment
Pascalammetry with operando microbattery probes: Sensing high stress in solid-state batteries.
Energy storage science calls for techniques to elucidate ion transport over a range of conditions and scales. We introduce a new technique, pascalammetry, in which stress is applied to a solid-state electrochemical device and induced faradaic current transients are measured and analyzed. Stress-step pascalammetry measurements are performed on operando microbattery probes (Li2O/Li/W) and Si cathodes, revealing stress-assisted Li+ diffusion. We show how non-Cottrellian lithium diffusional kinetics indicates stress, a prelude to battery degradation. An analytical solution to a diffusion/activation equation describes this stress signature, with spatiotemporal characteristics distinct from Cottrell's classic solution for unstressed systems. These findings create an unprecedented opportunity for quantitative detection of stress in solid-state batteries through the current signature. Generally, pascalammetry offers a powerful new approach to study stress-related phenomena in any solid-state electrochemical system
New numerical approaches for modeling thermochemical convection in a compositionally stratified fluid
Seismic imaging of the mantle has revealed large and small scale
heterogeneities in the lower mantle; specifically structures known as large low
shear velocity provinces (LLSVP) below Africa and the South Pacific. Most
interpretations propose that the heterogeneities are compositional in nature,
differing in composition from the overlying mantle, an interpretation that
would be consistent with chemical geodynamic models. Numerical modeling of
persistent compositional interfaces presents challenges, even to
state-of-the-art numerical methodology. For example, some numerical algorithms
for advecting the compositional interface cannot maintain a sharp compositional
boundary as the fluid migrates and distorts with time dependent fingering due
to the numerical diffusion that has been added in order to maintain the upper
and lower bounds on the composition variable and the stability of the advection
method. In this work we present two new algorithms for maintaining a sharper
computational boundary than the advection methods that are currently openly
available to the computational mantle convection community; namely, a
Discontinuous Galerkin method with a Bound Preserving limiter and a
Volume-of-Fluid interface tracking algorithm. We compare these two new methods
with two approaches commonly used for modeling the advection of two distinct,
thermally driven, compositional fields in mantle convection problems; namely,
an approach based on a high-order accurate finite element method advection
algorithm that employs an artificial viscosity technique to maintain the upper
and lower bounds on the composition variable as well as the stability of the
advection algorithm and the advection of particles that carry a scalar quantity
representing the location of each compositional field. All four of these
algorithms are implemented in the open source FEM code ASPECT
Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific
Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone's mechanical environment. Male mice have a greater response to non-weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 min/day; 12 m/min; 5° incline; 7 days/week) would similarly have a greater impact on cross-sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone- and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial–lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties
On Validating an Astrophysical Simulation Code
We present a case study of validating an astrophysical simulation code. Our
study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code
for studying the compressible, reactive flows found in many astrophysical
environments. We describe the astrophysics problems of interest and the
challenges associated with simulating these problems. We describe methodology
and discuss solutions to difficulties encountered in verification and
validation. We describe verification tests regularly administered to the code,
present the results of new verification tests, and outline a method for testing
general equations of state. We present the results of two validation tests in
which we compared simulations to experimental data. The first is of a
laser-driven shock propagating through a multi-layer target, a configuration
subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second
test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported
against the force of gravity by a light fluid. Our simulations of the
multi-layer target experiments showed good agreement with the experimental
results, but our simulations of the Rayleigh-Taylor instability did not agree
well with the experimental results. We discuss our findings and present results
of additional simulations undertaken to further investigate the Rayleigh-Taylor
instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ
Dual, orthogonal, backlit pinhole radiography in OMEGA experiments
Backlit pinhole radiography used with ungated film as a detector creates x-ray radiographs with increased resolution and contrast. Current hydrodynamics experiments on the OMEGA Laser use a three-dimensional sinusoidal pattern as a seed perturbation for the study of instabilities. The structure of this perturbation makes it highly desirable to obtain two simultaneous orthogonal backlighting views. We accomplished this using two backlit pinholes each mounted 12 mm12mm from the target. The pinholes, of varying size and shape, were centered on 5 mm5mm square foils of 50 μm50μm thick Ta. The backlighting is by KK-alpha emission from a 500 μm500μm square Ti or Sc foil mounted 500 μm500μm from the Ta on a plastic substrate. Four laser beams overfill the metal foil, so that the expanding plastic provides radial tamping of the expanding metal plasma. The resulting x-rays pass through the target onto (ungated) direct exposure film (DEF). Interference between the two views is reduced by using a nose cone in front of the DEF, typically with a 9 mm9mm Ta aperture and with magnets to deflect electrons. Comparison of varying types of pinholes and film exposures will be presented from recent experiments as well as an analysis of the background noise created using this experimental technique.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87894/2/10E327_1.pd
Siblingship in Afro-Caribbean Kinship: The Garifuna of Belize
This dissertation examines siblingship in the Garifuna village of Hopkins, an Afro-Amerindian community in southern Belize. It is based on intensive interviews with individual informants and comprehensive genealogical and demographic data that I collected during fieldwork there in 1987-89.
In this study, I describe variations of Garifuna siblingship and changes in siblingship over time. I consider relationships between individual siblings and investigate sibling groups acting in solidarity or disunion towards other Garifuna social units and the outside world. I evaluate sibling interdependencies from childhood to old age in ordinary affairs and at times of crisis. In addition to looking at differences between full-siblings and half-siblings, I also examine how more distant kinship ties and affairs between unrelated persons are sometimes expressed in an idiom of fictive siblingship.
Garifuna siblingship is analyzed in terms of gender roles, economic status, and property ownership and in relationship to parenting, godparenting, marriage, inheritance, emigration, employment, child fosterage, personal kindreds, social networks, and household composition. Through examination of siblingship in patterns of emotional and economic support, domestic and political authority, affective bonding, child rearing, food sharing, and job seeking, I elucidate the factors that activate and strengthen or weaken such relationships.
Garifuna siblingship is a cultural-symbolic ideal as well as a behavioral practice, and this study assesses the relationship of cultural values to actual behavior. Siblingship ideals are related to broader Garifuna ideals about egalitarianism and individualism and to non-Garifuna cultural influences from outside the community such as churches, schools, and government agencies
- …
