54 research outputs found

    Dvali-Gabadadze-Porrati Cosmology in Bianchi I brane

    Full text link
    The dynamics of Dvali-Gabadadze-Porrati Cosmology (DGP) braneworld with an anisotropic brane is studied. The Friedmann equations and their solutions are obtained for two branches of anisotropic DGP model. The late time behavior in DGP cosmology is examined in the presence of anisotropy which shows that universe enters a self-accelerating phase much later compared to the isotropic case. The acceleration conditions and slow-roll conditions for inflation are obtained

    Numerical simulation of lid driven flow in a curved corrugated porous cavity filled with CuO-water in the presence of heat generation/absorption

    Get PDF
    In this article, numerical simulation is performed for mixed convection lid-driven flow of CuO-water nanofluid enclosed in a curved corrugated. Cylindrical obstacles having three different constraints: (adiabatic, cold, and heated) at its surface are considered. Internal heat generation/absorption and uniform heat is provided at the vertical wall of the cavity. The bottom wall is insulated, and the curve surfaces are maintained with cold temperature. Mathematically equations are developed from physical problems and solved through Galerkin weighted residual method of FEM formulation. The effect of various Reynold number (), Darcy number (), solid volume fraction of nanoparticles (), heat generation/absorption coefficient () and various cylindrical obstacle on velocity, Nusselt number, molecular movements and the flow structure has been studied. Nusselt number increases for high Darcy number due to the convection in lid cavity. For high Reynold number generally Nusselt numbers decrease or remain the same at the wall with an increase of nanoparticles in porous medium. There significant effect of heat sink coefficient on temperature profile and Nusselt number decreases with increasing of Q

    Evolution of the density parameter in the anisotropic DGP cosmology

    Full text link
    Evolution of the density parameter in the anisotropic DGP braneworld model is studied. The role of shear and cross-over scale in the evolution of Ωρ\Omega_\rho is examined for both the branches of solution in the DGP model. The evolution is modified significantly compared to the FRW model and further it does not depend on the value of γ\gamma alone. Behaviour of the cosmological density parameter Ωρ\Omega_\rho is unaltered in the late universe. The study of decceleration parameter shows that the entry of the universe into self accelerating phase is determined by the value of shear. We also obtain an estimate of the shear parameter ΣH01.68×1010\frac{\Sigma}{H_0} \sim 1.68 \times 10^{-10}, which is in agreement with the constraints obtained in the literature using data.Comment: To apper in Int.J.Mod.Phys.D, 14 pages, 6 figure

    Toxicities, kinetics and degradation pathways investigation of ciprofloxacin degradation using iron-mediated H\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e2\u3c/sub\u3e based advanced oxidation processes

    Get PDF
    © 2018 Institution of Chemical Engineers Ciprofloxacin (CIP) is a widespread emerging water pollutant and thus its removal from aquatic environment is vital. The use of Fe3+/H2O2 and Fe2+/H2O2 resulted in 38 and 64% removal of CIP (8.0 ppm), respectively, within 80 min reaction time (pH 5.8, [H2O2]0 = 80 ppm, and [iron]0 = 20 ppm). Low pH, high temperature, high dose of H2O2 and Fe2+, and low CIP concentration facilitated removal of CIP. The radical scavenger studies proved in situ generated [rad]OH to be involved primarily in the removal of CIP. The effect of temperature was used to estimate enthalpy and activation energies of the removal of CIP. At 800 min reaction time, the Fe2+/H2O2 resulted in 54% mineralization of CIP using 16.0 ppm [CIP]0, 320.0 ppm [H2O2]0, and 40.0 ppm [Fe2+]0. The potential degradation pathways of CIP established from the degradation of CIP by [rad]OH and products evolved was found to be initiated at C6 through the loss of fluoride ion. The acute and chronic toxicities of CIP and its degradation products were estimated with the final product found to be non-toxic. The results suggest that Fe2+/H2O2-mediated AOPs have high potential for degradation as well as toxicity elimination of CIP and its degradation products

    Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study

    No full text
    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0ϕ0.20\le \phi\le 0.2) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number

    MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders

    Get PDF
    In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated. Keywords: MHD, Pulsating flow, Nanofluids, Carbon nanotubes, Concentric cylinder

    Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins

    No full text
    Thermal storage unit can be utilized to satisfy the balance of energy supply and demand. Copper oxide nanoparticles and V shaped fins are involved in storage unit in current research to expedite the solidification. To show the variation of energy storage efficiency, Finite element method has been employed. Important selected parameters are nanofluid concentration, angle of V shaped fin, copper oxide particle size and length of fins. Contours and profiles in various time steps are depicted. Outputs display that discharging rate augments with rise of angle of V shaped fin. Using copper oxide helps solidification. Length of fin has inverse relationship with discharging rate

    Refractivity variations and propagation at Ultra High Frequency

    No full text
    Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research. Keywords: Refractive index, Refractivity, Parabolic wave equation, Propagation, UHF, Antenna

    Heat transfer of nanoparticles employing innovative turbulator considering entropy generation

    No full text
    In current modeling, turbulent heat transfer of homogeneous nanofluid due to inserting double twisted tapes has been carried out. To better describing performance of unit, generation of entropy has been examined. CuO nanomaterial has been dispersed in to H 2 O, to help its conductivity. The pipe was under the impact of uniform heat flux. Equations describing the flow and energy balance were solved applying finite volume method. The simulations illustrate that both augmenting pumping power and height of tape result in the reduction of thermal component and the augmentation of frictional component
    corecore