24 research outputs found

    Sialylated N-glycans mediate monocyte uptake of extracellular vesicles secreted from Plasmodium falciparum-infected red blood cells

    Get PDF
    Glycoconjugates on extracellular vesicles (EVs) play a vital role in internalization and mediate interaction as well as regulation of the host immune system by viruses, bacteria, and parasites. During their intraerythrocytic life-cycle stages, malaria parasites, Plasmodium falciparum (Pf) mediate the secretion of EVs by infected red blood cells (RBCs) that carry a diverse range of parasitic and host-derived molecules. These molecules facilitate parasite-parasite and parasite-host interactions to ensure parasite survival. To date, the number of identified Pf genes associated with glycan synthesis and the repertoire of expressed glycoconjugates is relatively low. Moreover, the role of Pf glycans in pathogenesis is mostly unclear and poorly understood. As a result, the expression of glycoconjugates on Pf-derived EVs or their involvement in the parasite life-cycle has yet to be reported. Herein, we show that EVs secreted by Pf-infected RBCs carry significantly higher sialylated complex N-glycans than EVs derived from healthy RBCs. Furthermore, we reveal that EV uptake by host monocytes depends on N-glycoproteins and demonstrate that terminal sialic acid on the N-glycans is essential for uptake by human monocytes. Our results provide the first evidence that Pf exploits host sialylated N-glycans to mediate EV uptake by the human immune system cells

    A data dependent systems approach to dynamics of surface generation in turning

    No full text
    A new investigative approach to metal cutting dynamics is proposed based on wavelength decomposition of surface roughness by data dependent systems (DDS). This approach distinguishes from the commonly used Fourier transform analysis. It is shown to be capable of throwing light on both macroscopic and microscopic aspects of cutting mechanics. Workpiece surfaces from turning experiments, changing only speed and only feed, are used to illustrate that the macro-effects of cutting conditions and vibrations can be related to RMS components due to large wavelengths of a few tenths of mm magnitude. In particular, the so-called Spanzipfel effect is accounted for and its RMS is derived. It is also shown that wavelengths of a few micrometer magnitude, estimated from the workpiece surface roughness, seem to provide an independent estimate of chip surface lamellar widths in micro-morphology, well in agreement with earlier investigations. © 1981 by ASME

    Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration

    Get PDF
    Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape
    corecore