3,510 research outputs found
On the Explosion Mechanism of SNe Type Ia
In this article we discuss the first simulations of two- and
three-dimensional Type Ia supernovae with an improved hydrodynamics code. After
describing the various enhancements, the obtained results are compared to those
of earlier code versions, observational data and the findings of other
researchers in this field.Comment: 7 pages, 4 figure
Libpsht - algorithms for efficient spherical harmonic transforms
Libpsht (or "library for Performant Spherical Harmonic Transforms") is a
collection of algorithms for efficient conversion between spatial-domain and
spectral-domain representations of data defined on the sphere. The package
supports transforms of scalars as well as spin-1 and spin-2 quantities, and can
be used for a wide range of pixelisations (including HEALPix, GLESP and ECP).
It will take advantage of hardware features like multiple processor cores and
floating-point vector operations, if available. Even without this additional
acceleration, the employed algorithms are among the most efficient (in terms of
CPU time as well as memory consumption) currently being used in the
astronomical community.
The library is written in strictly standard-conforming C90, ensuring
portability to many different hard- and software platforms, and allowing
straightforward integration with codes written in various programming languages
like C, C++, Fortran, Python etc.
Libpsht is distributed under the terms of the GNU General Public License
(GPL) version 2 and can be downloaded from
http://sourceforge.net/projects/libpsht.Comment: 9 pages, 8 figures, accepted by A&
Type Ia Supernova Explosion Models: Homogeneity versus Diversity
Type Ia supernovae (SN Ia) are generally believed to be the result of the
thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs,
mainly because such thermonuclear explosions can account for the right amount
of Ni-56, which is needed to explain the light curves and the late-time
spectra, and the abundances of intermediate-mass nuclei which dominate the
spectra near maximum light. Because of their enormous brightness and apparent
homogeneity SN Ia have become an important tool to measure cosmological
parameters. In this article the present understanding of the physics of
thermonuclear explosions is reviewed. In particular, we focus our attention on
subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by
heat diffusion and convection rather than by compression. Models based upon
this mode of nuclear burning have been applied very successfully to the SN Ia
problem, and are able to reproduce many of their observed features remarkably
well. However, the models also indicate that SN Ia may differ considerably from
each other, which is of importance if they are to be used as standard candles.Comment: 11 pages, 4 figures. To appear in Proc. 10th Ann. Astrophys. Conf.
"Cosmic Explosions", Univ. of Maryland 1999, eds. S.S. Holt and W.W. Zhan
Fast Two-Qubit Gates in Semiconductor Quantum Dots using a Photonic Microcavity
Implementations for quantum computing require fast single- and multi-qubit
quantum gate operations. In the case of optically controlled quantum dot qubits
theoretical designs for long-range two- or multi-qubit operations satisfying
all the requirements in quantum computing are not yet available. We have
developed a design for a fast, long-range two-qubit gate mediated by a photonic
microcavity mode using excited states of the quantum dot-cavity system that
addresses these needs. This design does not require identical qubits, it is
compatible with available optically induced single qubit operations, and it
advances opportunities for scalable architectures. We show that the gate
fidelity can exceed 90% in experimentally accessible systems
A new model for deflagration fronts in reactive fluids
We present a new way of modeling deflagration fronts in reactive fluids, the
main emphasis being on turbulent thermonuclear deflagration fronts in white
dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a
level set method which treats the front as a mathematical discontinuity and
allows full coupling between the front geometry and the flow field. With only
minor modifications, this method can also be applied to describe contact
discontinuities. Two different implementations are described and their
physically correct behaviour for simple testcases is shown. First results of
the method applied to the concrete problems of Type Ia supernovae and chemical
hydrogen combustion are briefly discussed; a more extensive analysis of our
astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report
1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended
according to referee's comment
The impact of beam deconvolution on noise properties in CMB measurements: Application to Planck LFI
We present an analysis of the effects of beam deconvolution on noise
properties in CMB measurements. The analysis is built around the artDeco beam
deconvolver code. We derive a low-resolution noise covariance matrix that
describes the residual noise in deconvolution products, both in harmonic and
pixel space. The matrix models the residual correlated noise that remains in
time-ordered data after destriping, and the effect of deconvolution on it. To
validate the results, we generate noise simulations that mimic the data from
the Planck LFI instrument. A test for the full 70 GHz covariance in
multipole range yields a mean reduced of 1.0037. We
compare two destriping options, full and independent destriping, when
deconvolving subsets of available data. Full destriping leaves substantially
less residual noise, but leaves data sets intercorrelated. We derive also a
white noise covariance matrix that provides an approximation of the full noise
at high multipoles, and study the properties on high-resolution noise in pixel
space through simulations.Comment: 22 pages, 25 figure
Three-dimensional simulations of type Ia supernovae
We present the results of three-dimensional hydrodynamical simulations of the
subsonic thermonuclear burning phase in type Ia supernovae. The burning front
model contains no adjustable parameters so that variations of the explosion
outcome can be linked directly to changes in the initial conditions. In
particular, we investigate the influence of the initial flame geometry on the
explosion energy and find that it appears to be weaker than in 2D. Most
importantly, our models predict global properties such as the produced nickel
masses and ejecta velocities within their observed ranges without any fine
tuning.Comment: 7 pages, 5 figures, accepted by A&
Surface detonation in type Ia supernova explosions?
We explore the evolution of thermonuclear supernova explosions when the
progenitor white dwarf star ignites asymmetrically off-center. Several
numerical simulations are carried out in two and three dimensions to test the
consequences of different initial flame configurations such as spherical
bubbles displaced from the center, more complex deformed configurations, and
teardrop-shaped ignitions. The burning bubbles float towards the surface while
releasing energy due to the nuclear reactions. If the energy release is too
small to gravitationally unbind the star, the ash sweeps around it, once the
burning bubble approaches the surface. Collisions in the fuel on the opposite
side increase its temperature and density and may -- in some cases -- initiate
a detonation wave which will then propagate inward burning the core of the star
and leading to a strong explosion. However, for initial setups in two
dimensions that seem realistic from pre-ignition evolution, as well as for all
three-dimensional simulations the collimation of the surface material is found
to be too weak to trigger a detonation.Comment: 5 pages, 3 figures, in: Proceedings of the SciDAC 2006 Meeting,
Denver June 25-26 2006, also available at
http://herald.iop.org/jpcs46/m51/gbr//link/40
- …
