90 research outputs found

    Biologische Verwertung niederkonzentrierten Biogases mittels methanotropher Bakterien

    Get PDF
    Biogas, mit geringen Konzentrationen an Methan, entsteht unter anderem bei verschiedenen industriellen Prozessen. Wegen der Umweltschädlichkeit des Methans gilt es dessen Eintrag in die Umwelt zu vermeiden. Das Ziel des vorgestellten Projektes war die Überprüfung eines umweltfreundlichen Verfahrens zur Reduzierung des Methans durch methanotrophe Bakterien. Die einzelnen Batchversuche liefen über 15 Stunden und zeigten eine starke Reduzierung des Methans von 18 auf 1 Vol.-%

    Messverfahren zur Erfassung der potenziellen Ökotoxizität in anaeroben und aeroben Abbauprozessen

    Get PDF
    In der vorliegenden Ausarbeitung werden die etablierten Verfahren zur Bestimmung der Ökotoxizität erläutert, mit dem Ziel weitere Bioaktivitätsparameter zur Charakterisierung der biologischen Prozesse bei der Forschungsgemeinschaft :metabolon zu integrieren. Die Erfassung der Toxizität beruht bei den vorgestellten Methoden auf der Messung der Lumineszenz, der Sauerstoffverbrauchsrate oder der Zellzahl. In Abhängigkeit von den Eigenschaften der Schadstoffe sowie der biologischen Betriebsbedingungen der Behandlungsstufen ist die Auswahl der bestmöglichen Methode erforderlich

    Entwicklung einer analytischen Methode zur Inline-Charakterisierung von Fermentermaterial aus Biogas-anlagen mittels ATR-FTMIR-Spektroskopie

    Get PDF
    Mit Hilfe der Inline-ATR-FTIR-Spektroskopie im mittelinfraroten (MIR) Spektralbereich lassen sich gleich mehrere Prozessparameter für Biogasanlagen in Echtzeit und ohne Probenahme verfolgen. Die gemessenen Absorptionsspektren geben simultan Aufschluss über den Gehalt an flüchtigen organischen Säuren (FOS), die alkalische Pufferkapazität (TAC) und die Ammoniumstickstoff-Konzentration (NH4-N). Dabei können unter Verwendung intelligenter Datenanalyseverfahren, wie z.B. Partial Least Squares (PLS), Regression oder Support Vector Regression (SVR) sowie in kontrollierter Laborumgebung, Vorhersagefehler (RMSECV) von 0.372 g/l (FOS: R2=0.971), 0.336 g/l (TAC: R2=0.996) und 0.171 g/l (NH4-N: R2=0.992) im Falle der PLS, bzw. 0.386, 0.259 und 0.110 g/l für die SVR erreicht werden. Erste Inline-Messungen in einer Biomüllvergärungsanlage zeigen, dass die erwarteten Absorptionsbanden auch im Prozessbetrieb wiedergefunden werden können. Sie unterliegen jedoch einem ausgeprägten Temperatureinfluss, der bei der Quantifizierung dieser Prozessdaten berücksichtigt werden muss. Weiterführende Untersuchungen sind notwendig, um die Inline-Tauglichkeit des Messsystems unter Beweis zu stellen

    Eye Size at Birth in Prosimian Primates: Life History Correlates and Growth Patterns

    Get PDF
    BACKGROUND: Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids.\ud \ud METHODOLOGY/PRINCIPAL FINDINGS: We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta) to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius), compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns.\ud \ud CONCLUSIONS/SIGNIFICANCE: The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits of nocturnal species, mainly emerge during postnatal development.\ud \u

    Testing the orbital lubrication hypothesis: the Harderian glands in burrowing skinks (Reptilia: Squamata)

    No full text
    The Harderian gland is an orbital gland thought to be a source of corneal lubricant, supplementary to the other orbital glands. This study investigated the possible role of skink Harderian glands in corneal lubrication. It was hypothesized that if these glands play a role in corneal lubrication, then the structure of these glands would be affected by structural orbital modifications. We examined the Harderian and lacrimal glands of five species of Australian skinks (Lygosominae), two of which possessed orbital modifications in the form of a transparent immoveable eyelid (spectacle) and skull reduction. All species possessed well-developed posterior lacrimal glands, but no anterior lacrimal glands. Anatomically, the Harderian glands were smaller in the burrowing species relative to the nonburrowing species. No other obvious species-specific differences were observed. The absence of any differentiation at the microscopic level suggests that although there is some change in the relative amount of secretant produced, the nature of the secretion studied by classical histochemistry remains essentially unchanged. However, at higher taxonomic levels, the size and structure of the Harderian gland may be taxon-specific and unrelated to the orbital environment. Thus, orbital lubrication may not necessarily be the sole function of the Harderian gland.S. J. Rehorek, M. N. Hutchinson, and B. T. Firt

    The structure of the nasal chemosensory system in squamate reptiles. 1. The olfactory organ, with special reference to olfaction in geckos

    No full text
    The luminal surface of the chemosensory epithelia of the main olfactory organ of terrestrial vertebrates is covered by a layer of fluid. The source of this fluid layer varies among vertebrates. Little is known regarding the relative development of the sources of fluid (sustentacular cells and Bowman's glands) in reptiles, especially in gekkotan lizards (despite recent assertions of olfactory speciality). This study examined the extent and morphology of the main olfactory organ in several Australian squamate reptiles, including three species of gekkotans, two species of skinks and one snake species. The olfactory mucosa of two gekkotan species (Christinus marmoratus and Strophurus intermedius) is spread over a large area of the nasal cavity. Additionally, the sustentacular cells of all three gekkotan species contained a comparatively reduced number of secretory granules, in relation to the skinks or snake examined. These observations imply that the gekkotan olfactory system may function differently from that of either skinks or snakes. Similar variation in secretory granule abundance was previously noted between mammalian and non-mammalian olfactory sustentacular cells. The observations in gekkotans suggests that the secretory capacity of the non-mammalian olfactory sustentacular cells show far more variation than initially thought

    The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ

    No full text
    The vomeronasal organ is a poorly understood accessory olfactory organ, present in many tetrapods. In mammals, amphibians and lepidosaurian reptiles, it is an encapsulated structure with a central, fluid-filled lumen. The morphology of the lubricatory system of the vomeronasal organ (the source of this fluid) varies among classes, being either intrinsic (mammalian and caecilian amphibian vomeronasal glands) or extrinsic (anuran and urodele nasal glands). In the few squamate reptiles thus far examined, there are no submucosal vomeronasal glands. In this study, we examined the vomeronasal organs of several species of Australian squamates using histological, histochemical and ultrastructural techniques, with the goal of determining the morphology of the lubricatory system in the vomeronasal organ. Histochemically, the fluid within the vomeronasal organ of all squamates is mucoserous, though it is uncertain whether mucous and serous constituents constitute separate components. The vomeronasal organ produces few secretory granules intrinsically, implying an extrinsic source for the luminal fluid. Of three possible candidates, the Harderian gland is the most likely extrinsic source of this secretion

    Degradation of Azo Dyes by Laccase and Ultrasound Treatment

    No full text
    The goal of this work was to investigate the decomposition of azo dyes by oxidative methods, such as laccase and ultrasound treatments. Each of these methods has strong and feeble sides. The laccase treatment showed high decolorization rates but cannot degrade all investigated dyes (reactive dyes), and high anionic strength led to enzyme deactivation. Ultrasound treatment can decolorize all tested dyes after 3 h at a high energy input, and prolonged sonication leads to nontoxic ionic species, which was demonstrated by ion chromatography and toxicity assays. For the first time, it was shown that a combination of laccase and ultrasound treatments can have synergistic effects, which was shown by higher degradation rates. Bulk light absorption and ion-pairing high-performance liquid chromatography (IP-HPLC) were used for process monitoring, while with reversed-phase HPLC, a lower number of intermediates than expected by IP-HPLC was found. Liquid chromatography-mass spectrometry indicated that both acid orange dyes lead to a common end product due to laccase treatment. Acid Orange 52 is demethylated by laccase and ultrasound treatment. Further results confirmed that the main effect of ultrasound is based on ˙OH attack on the dye molecules

    Can an orbital gland function in the vomeronasal sense? A study of the pygopodid Harderian gland

    No full text
    The Harderian gland occurs in the orbit of most tetrapod vertebrates. A growing body of evidence suggests that this gland is associated with the chemoreceptive function of the vomeronasal organ. In the present study, the morphology of the Harderian gland in two species of pygopodids was examined, and the results were contrasted with those from both geckos and snakes. The results show that the pygopodid Harderian gland shares histochemical and ultrastructural features with that of the geckos. However, in several gross morphological features, the pygopodid Harderian gland more closely resemble that of snakes than that of geckos. In both pygopodids and snakes, the nasolacrimal duct forms a direct link between the Harderian gland and the vomeronasal organ, which indicates that this specialized connection between the Harderian gland and vomeronasal organ is a convergent evolutionary attribute of these two groups. </jats:p
    • …
    corecore