666 research outputs found

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Lifetime of molecule-atom mixtures near a Feshbach resonance in 40K

    Full text link
    We report a dramatic magnetic field dependence in the lifetime of trapped, ultracold diatomic molecules created through an s-wave Feshbach resonance in 40K. The molecule lifetime increases from less than 1 ms away from the Feshbach resonance to greater than 100 ms near resonance. We also have measured the trapped atom lifetime as a function of magnetic field near the Feshbach resonance; we find that the atom loss is more pronounced on the side of the resonance containing the molecular bound state

    Cooling a single atom in an optical tweezer to its quantum ground state

    Full text link
    We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of ~90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.Comment: Updated intro, titl

    BEC-BCS crossover in an optical lattice

    Full text link
    We present the microscopic theory for the BEC-BCS crossover of an atomic Fermi gas in an optical lattice, showing that the Feshbach resonance underlying the crossover in principle induces strong multiband effects. Nevertheless, the BEC-BCS crossover itself can be described by a single-band model since it occurs at magnetic fields that are relatively far away from the Feshbach resonance. A criterion is proposed for the latter, which is obeyed by most known Feshbach resonances in ultracold atomic gases.Comment: 4 pages, 3 figure

    Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise

    Full text link
    Pair-correlated fermionic atoms are created through dissociation of weakly bound molecules near a magnetic-field Feshbach resonance. We show that correlations between atoms in different spin states can be detected using the atom shot noise in absorption images. Furthermore, using time-of-Flight imaging we have observed atom pair correlations in momentum space
    • …
    corecore