17 research outputs found

    IDENTIFYING HIGH-RISK POPULATIONS OF TUBERCULOSIS USING ENVIRONMENTAL FACTORS AND GIS BASED MULTI-CRITERIA DECISION MAKING METHOD

    Get PDF
    Development of an innovative method to enhance the detection of tuberculosis (TB) in Malaysia is the latest agenda of the Ministry of Health. Therefore, a geographical information system (GIS) based index model is proposed as an alternative method for defining potential high-risk areas of local TB cases at Section U19, Shah Alam. It is adopted a spatial multi-criteria decision making (MCDM) method for ranking environmental risk factors of the disease in a standardised five-score scale. Scale 1 and 5 illustrate the lowest and the highest risk of the TB spread respectively, while scale from 3 to 5 is included as a potential risk level. These standardised scale values are then combined with expert normalised weights (0 to 1) to calculate the overall index values and produce a TB ranked map using a GIS overlay analysis and weighted linear combination. It is discovered that 71.43% of the Section is potential as TB high risk areas particularly at urban and densely populated settings. This predictive result is also reliable with the current real cases in 2015 by 76.00% accuracy. A GIS based MCDM method has demonstrated analytical capabilities in targeting high-risk spots and TB surveillance monitoring system of the country, but the result could be strengthened by applying other uncertainty assessment method

    Mathematical modeling of non-premixed laminar flow flames fed with biofuel in counter-flow arrangement considering porosity and thermophoresis effects: an asymptotic approach

    No full text
    Due to the safe operation and stability of non-premixed combustion, it can widely be utilized in different engineering power and medical systems. The current paper suggests a mathematical asymptotic technique to describe non-premixed laminar flow flames formed in organic particles in a counter-flow configuration. In this investigation, fuel and oxidizer enter the combustor from opposite sides separately and multiple zones including preheating, vaporization, flame and post-flame zones were considered. Micro-sized lycopodium particles and air were respectively applied as a biofuel and an oxidizer. Dimensionalized and non-dimensionalized mass and energy conservation equations were determined for the zones and solved by Mathematica and Matlab software by applying proper boundary and jump conditions. Since lycopodium particles have numerous spores, the porosity of the particles was involved in the equations. Further, significant parameters such as lycopodium vaporization rate and thermophoretic force corresponding to the lycopodium particles in the solid phase were examined. The temperature distribution, flame sheet position, fuel and oxidizer mass fractions, equivalence ratio and flow strain rate were evaluated for the counter-flow non-premixed flames. Ultimately, the thermophoretic force caused by the temperature gradient at different positions was computed for several values of porosity, fuel and oxidizer Lewis numbers

    Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer

    No full text
    Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment

    Toward Accumulation of Magnetic Nanoparticles into Tissues of Small Porosity

    No full text
    Magnetic concentration of drug-laden magnetic nanoparticles has been proven to increase the delivery efficiency of treatment by 2-fold. In these techniques, particles are concentrated by the presence of a magnetic source that delivers a very high magnetic field and a strong magnetic field gradient. We have found that such magnetic conditions cause even 150 nm particles to aggregate significantly into assemblies that exceed several micrometers in length within minutes. Such assembly sizes exceed the effective intercellular pore size of tumor tissues preventing these drug-laden magnetic nanoparticles from reaching their target sites. We demonstrate that by using dynamic magnetic fields instead, we can break up these magnetic nanoparticles while simultaneously concentrating them at target sites. The dynamic fields we investigate involve precessing the field direction while maintaining a field gradient. Manipulating the field direction drives the particles into attractive and repulsive configurations that can be tuned to assemble or disassemble these particle clusters. Here, we develop a simple analytic model to describe the kinetic thresholds of disassembly and we compare both experimental and numerical results of magnetic particle suspensions subjected to dynamic fields. Finally we apply these methods to demonstrate penetration in a porous scaffold with a similar pore size to that expected of a tumor tissue
    corecore