14,161 research outputs found

    Estimating the magnetic field strength from magnetograms

    Full text link
    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer and still produce the same magnetic signal. Yet, we know that arbitrarily stronger fields are less likely --hG fields are more probable than kG fields, with fields above several kG virtually absent-- and we may even have partial information about its angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.Comment: 8 pages, 7 figures, accepted for publication in A&

    Near-IR internetwork spectro-polarimetry at different heliocentric angles

    Full text link
    The analysis of near infrared spectropolarimetric data at the internetwork at different regions on the solar surface could offer constraints to reject current modeling of these quiet areas. We present spectro-polarimetric observations of very quiet regions for different values of the heliocentric angle for the Fe I lines at 1.56 micron, from disc centre to positions close to the limb. The spatial resolution of the data is 0.7-1". We analyze direct observable properties of the Stokes profiles as the amplitude of circular and linear polarization as well as the total degree of polarization. Also the area and amplitude asymmetries are studied. We do not find any significant variation of the properties of the polarimetric signals with the heliocentric angle. This means that the magnetism of the solar internetwork remains the same regardless of the position on the solar disc. This observational fact discards the possibility of modeling the internetwork as a Network-like scenario. The magnetic elements of internetwork areas seem to be isotropically distributed when observed at our spatial resolution.Comment: Sorry, this is the version with the correct bibliography. Some figures had to be compressed. Accepted for publication in A&

    A near-IR line of Mn I as a diagnostic tool of the average magnetic energy in the solar photosphere

    Get PDF
    We report on spectropolarimetric observations of a near-IR line of Mn I located at 15262.702 A whose intensity and polarization profiles are very sensitive to the presence of hyperfine structure. A theoretical investigation of the magnetic sensitivity of this line to the magnetic field uncovers several interesting properties. The most important one is that the presence of strong Paschen-Back perturbations due to the hyperfine structure produces an intensity line profile whose shape changes according to the absolute value of the magnetic field strength. A line ratio technique is developed from the intrinsic variations of the line profile. This line ratio technique is applied to spectropolarimetric observations of the quiet solar photosphere in order to explore the probability distribution function of the magnetic field strength. Particular attention is given to the quietest area of the observed field of view, which was encircled by an enhanced network region. A detailed theoretical investigation shows that the inferred distribution yields information on the average magnetic field strength and the spatial scale at which the magnetic field is organized. A first estimation gives ~250 G for the mean field strength and a tentative value of ~0.45" for the spatial scale at which the observed magnetic field is horizontally organized.Comment: 42 pages, 17 figures, accepted for publication in the Astrophysical Journal. Figures 1 and 9 are in JPG forma

    Temperature dependent charge transport mechanisms in carbon sphere/polymer composites

    Full text link
    Carbon spheres (CS) with diameters in the range 2−10μm2 - 10 \mu m were prepared via hydrolysis of a sucrose solution at 200oC,200^o C, and later annealed in N2N_2 at 800oC.800^o C. The spheres were highly conducting but difficult to process into thin films or pressed pellets. In our previous work, composite samples of CS and the insulating polymer polyethylene oxide (PEO) were prepared and their charge transport was analyzed in the temperature range 80K<T<300K. 80 K < T < 300 K. Here, we analyze charge transport in CS coated with a thin polyaniline (PANi) film doped with hydrochloric acid (HCl), in the same temperature range. The goal is to study charge transport in the CS using a conducting polymer (PANi) as a binder and compare with that occurring at CS/PEO. A conductivity maxima was observed in the CS/PEO composite but was absent in CS/PANi. Our data analysis shows that variable range hopping of electrons between polymeric chains in PANi-filled gaps between CS takes on a predominant part in transport through CS/PANi composites, whereas in CS/PEO composites, electrons travel through gaps between CS solely by means of direct tunneling. This difference in transport mechanisms results in different temperature dependences of the conductivity.Comment: 7 pages, 6 figure

    Assessment of the structures contribution (crystalline and mesophases) and mechanical properties of polycaprolactone/pluronic blends

    Get PDF
    Films of biodegradable blends of polycaprolactone (PCL) and Pluronics F68 and F127 were manufactured by an industrial thermo-mechanical process to be applied as potential delivery systems. The effects of Pluronics on the structure (mesophase organization), and thermal and mechanical properties of polycaprolactone were investigated using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), polarized optical microscopy (POM) and tensile mechanical tests. The addition of Pluronics affected the crystallization process by changing the relative amounts of crystalline, amorphous, and meso- (condis + plastic) phases. The melting transition and XRD profiles were deconvoluted to assess the individual contribution of the different crystal morphologies. Furthermore, it was found that the mechanical properties of the blends depended on the ratio and type of Pluronic. Thus, Pluronic F127 showed a larger mesophase content than its F68 counterpart with PCL and blends with enhanced ductilityFunding for open access charge was provided by Universidad de Huelva / CBUA. The authors gratefully acknowledge the financial support
    • …
    corecore