9 research outputs found

    Treatment strategies against diabetes: Success so far and challenges ahead

    Full text link
    © 2019 Elsevier B.V. The growing disease burden of diabetes mellitus is an important public health concern, affecting over 400 million people globally. This epidemic, if not controlled in time, leads to life threatening complications, compromise in quality of life, and eventually mortality. Over time, many attempts have been made for the effective treatment of diabetes but true success has never been achieved. Pharmacological and non-pharmacological approaches for the treatment of hyperglycaemia have been ever-evolving due to limitations of current therapies. Non pharmacological management which includes diet management and exercise, has been the primary focus for self-management of diabetes. The pharmacological management includes oral antihyperglycaemics, phytoconstituents, and combination products. Advancements such as nanocarrier delivery systems have been made in drug delivery to overcome the challenges such as poor bioavailability associated with conventional dosage forms currently employed in diabetes treatment. In recent years, much emphasis has been given to synbiotics that act on gut microbiota, as an emerging therapy for diabetes. The current review discusses different treatment strategies for diabetes management starting from insulin therapy to synbiotics. The combination of herbal phytoconstituents with synthetic drugs, synthetic drug combinations, novel drug delivery systems for insulin are highlighted. Moreover, the role of gut dysbiosis in diabetes and its treatment by administration of synbiotics in various clinical as well as non clinical studies has been discussed in detail

    Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives

    Full text link
    Rosmarinic acid (RA) is a polyphenolic metabolite found in various culinary, dietary sources, and medicinal plants like Coleus scutellarioides (Linn) Benth., Lavandula angustifolia Linn., Mellisa officinalis Linn., Origanum vulgare Linn., Rosmarinus officinalis Linn., Zataria multiflora Boiss. and Zhumeria majdae Rech. F. Apart from its dietary and therapeutic values, RA is an important anticancer phytochemical owing to its multi-targeting anticancer mechanism. These properties provide a scope for RA’s therapeutic uses beyond its traditional use as a dietary source. However, its oral bioavailability is limited due to its poor solubility and permeability. This impedes its efficacy in treating cancer. Indeed, in recent years, tremendous efforts have been put towards the development of nanoformulations of RA for treating cancer. However, this research is in its initial stage as bringing a nanoparticle into the market itself is associated with many issues such as stability, toxicity, and scale-up issues. Considering these pitfalls during formulation development and overcoming them would surely provide a new face to RA as a nanomedicine to treat cancer. A literature search was conducted to systematically review the various biological sources, extraction techniques, and anticancer mechanisms through which RA showed multiple therapeutic effects. Various nanocarriers of RA pertaining to its anticancer activity are also discussed in this review.</jats:p

    Overcoming hydrolytic degradation challenges in topical delivery: Non-aqueous nano-emulsions.

    Full text link
    IntroductionNon-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application.Areas coveredThe present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed.Expert opinionNANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further
    corecore