33 research outputs found

    The Effects of Irreversible Electroporation (IRE) on Nerves

    Get PDF
    Background: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE) might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. Methods: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 ms long was applied directly to rat sciatic nerves. In each animal of group I (IRE) the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control) the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. Findings: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. Conclusion: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves

    DataSheet1_Experimental evaluation of the performance and power output enhancement of a divergent solar chimney power plant by increasing the chimney height.PDF

    No full text
    Solar energy is an attractive renewable energy option for countries located in the tropical region. Harvesting this energy using simple yet innovative technologies such as solar chimney power plants (SCPP) will help the developing countries in meeting their sustainable development goals. In an SCPP, air is heated under a greenhouse collector and the hot air is passed to a chimney, where it drives a turbine while rising up. Research efforts have been directed in the past at improving the performance and power output of an SCPP by varying its geometric parameters. The chimney height of a previously optimized solar chimney power plant, having a divergent chimney, was increased from 4 to 6 m and then to 8 m in this first experimental work of this kind. The temperature variations inside the collector, along the chimney height, the velocity at the turbine section, the power available and the output power of an air turbine, estimated by applying mechanical load, are compared for the three chimney heights. The temperature rise of the air inside the collector was the highest for the 4 m tall SCPP and reduced as the chimney height was increased to 6 and 8 m due to the lower time of stay of air in the collector for greater chimney heights. Along the height of the divergent chimney, the temperature dropped with the maximum drop occurring for the 8 m tall SCPP indicating a lower enthalpy loss at the chimney exit. The air velocity at the turbine section was found to increase with chimney height for given solar insolation/time of the day due to the higher driving force which is the buoyancy effect produced by the hot air. The maximum turbine output power for the 8 m tall SCPP increased by 252% compared to the 4 m tall SCPP indicating that significant improvement in the power output can be achieved by increasing the height of a divergent chimney SCPP. An average power of about 40 kW will be available for a chimney height of 100 m which will be extremely beneficial for the sustainable development of small islands.</p

    Calibration of PRECIS in employing future scenarios in Bangladesh

    No full text
    Providing Regional Climates for Impacts Studies (PRECIS) is a regional climate model, which is used for the simulation of regional-scale climatology at high resolution (i.e. 50-km horizontal resolution). The calibration of rainfall and temperature simulated by PRECIS is performed in Bangladesh with the surface observational data from the Bangladesh Meteorological Department (BMD) for the period 1961-1990. The Climate Research Unit (CRU) data is also used for understanding the performance of the model. The results for the period 1961-1990 are used as a reference to find the variation of PRECIS-projected rainfall and temperature in 2071, in and around Bangladesh, as an example. Analyses are performed using the following two methods: (1) grid-to-grid and (2) point-to-point analyses. It is found that grid-to-grid analysis provides overestimation of PRECIS in Bangladesh because of downscaling of observed data when gridded from asymmetric low-density data network of BMD. On the other hand, model data extracted at observational sites provide better performance of PRECIS. The model overestimates rainfall in dry and pre-monsoon periods, whereas it underestimates it in the monsoon period. Overall, PRECIS is found to be able to estimate about 92 of surface rainfall. Model performance in estimating rainfall increases substantially with the increase in the length of time series of datasets. Systematic cold bias is found in simulating the annual scale of the surface temperature. In the annual scale, the model underestimates temperature of about 0.61 °C that varies within a range of + 1.45°C to - 3.89°C in different months. This analysis reveals that rainfall and temperature will be increased in Bangladesh in 2071. On the basis of the analyses, look-up tables for rainfall and temperature were prepared in a bid to calibrate PRECIS simulation results for Bangladesh. The look-up tables proposed in this analysis can be employed in the application of the projected rainfall and temperature in different sectors of the country. These look-up tables are useful only for the calibration of PRECIS simulation results for future climate projection for Bangladesh
    corecore