212 research outputs found

    Cross-waves induced by the vertical oscillation of a fully immersed vertical plate

    Full text link
    Capillary waves excited by the vertical oscillations of a thin elongated plate below an air-water interface are analyzed using time-resolved measurements of the surface topography. A parametric instability is observed above a well defined acceleration threshold, resulting in a so-called cross-wave, a staggered wave pattern localized near the wavemaker and oscillating at half the forcing frequency. This cross-wave, which is stationary along the wavemaker but propagative away from it, is described as the superposition of two almost anti-parallel propagating parametric waves making a small angle of the order of 20o20^\mathrm{o} with the wavemaker edge. This contrasts with the classical Faraday parametric waves, which are exactly stationnary because of the homogeneity of the forcing. Our observations suggest that the selection of the cross-wave angle results from a resonant mechanism between the two parametric waves and a characteristic length of the surface deformation above the wavemaker.Comment: to appear in Physics of Fluid

    Instability patterns between counter-rotating disks

    Get PDF
    International audienceThe instability patterns in the flow between counter-rotating disks (radius to height ratio R/h from 3.8 to 20.9) are investigated experimentally by means of visualization and Particle Image Velocimetry. We restrict ourselves to the situation where the boundary layers remain stable, focusing on the shear layer instability that occurs only in the counter-rotating regime. The associated pattern is a combination of a circular chain of vortices, as observed by Lopez et al. (2002) at low aspect ratio, surrounded by a set of spiral arms, first described by Gauthier et al. (2002) in the case of high aspect ratio. Stability curve and critical modes are measured for the whole range of aspect ratios. From the measurement of a local Reynolds number based on the shear layer thickness, evidence is given that a free shear layer instability, with only weak curvature effect, is responsible for the observed patterns. Accordingly, the number of vortices is shown to scale as the shear layer radius, which results from the competition between the centrifugal effects of each disk

    Wind-wave growth over a viscous liquid

    Full text link
    Experimental and theoretical studies on wind-wave generation have focused primarily on the air-water interface, where viscous effects are small. Here we characterize the influence of the liquid viscosity on the the growth of mechanically generated waves. In our experiment, wind is blowing over a layer of silicon oil, of viscosity 20 and 50 times that of water, and waves of small amplitude are excited by an immersed wave-maker. We measure the spatial evolution of the wave slope envelope using Free-Surface Synthetic Schlieren, a refraction-based optical method. Through spatiotemporal band-pass filtering of the surface slope, we selectively determine the spatial growth rate for each forcing frequency, even when the forced wave is damped and coexists with naturally amplified waves at other frequencies. Systematic measurements of the growth rate for various wind velocities and wave frequencies are obtained, enabling precise determination of the onset of wave growth and the marginal stability curve. From these measurements, we show that Miles' model, which is commonly applied to water waves, offers a reasonable description of the growth rate for more viscous liquids. We finally discuss the scaling of the growth rate of the most amplified wave and the critical friction velocity with the liquid viscosity.Comment: subm. to Phys Rev Fluid

    Wall effects on granular heap stability

    Full text link
    We investigate the effects of lateral walls on the angle of movement and on the angle of repose of a granular pile. Our experimental results for beads immersed in water are similar to previous results obtained in air and to recent numerical simulations. All of these results, showing an increase of pile angles with a decreasing gap width, are explained by a model based on the redirection of stresses through the granular media. Two regimes are observed depending on the bead diameter. For large beads, the range of wall effects corresponds to a constant number of beads whereas it corresponds to a constant characteristic length for small beads as they aggregate via van der Waals forces

    Dynamics of grain ejection by sphere impact on a granular bed

    Get PDF
    The dynamics of grain ejection consecutive to a sphere impacting a granular material is investigated experimentally and the variations of the characteristics of grain ejection with the control parameters are quantitatively studied. The time evolution of the corona formed by the ejected grains is reported, mainly in terms of its diameter and height, and favourably compared with a simple ballistic model. A key characteristic of the granular corona is that the angle formed by its edge with the horizontal granular surface remains constant during the ejection process, which again can be reproduced by the ballistic model. The number and the kinetic energy of the ejected grains is evaluated and allows for the calculation of an effective restitution coefficient characterizing the complex collision process between the impacting sphere and the fine granular target. The effective restitution coefficient is found to be constant when varying the control parameters.Comment: 9 page

    Granular Avalanches in Fluids

    Full text link
    Three regimes of granular avalanches in fluids are put in light depending on the Stokes number St which prescribes the relative importance of grain inertia and fluid viscous effects, and on the grain/fluid density ratio r. In gas (r >> 1 and St > 1, e.g., the dry case), the amplitude and time duration of avalanches do not depend on any fluid effect. In liquids (r ~ 1), for decreasing St, the amplitude decreases and the time duration increases, exploring an inertial regime and a viscous regime. These regimes are described by the analysis of the elementary motion of one grain
    corecore