38,525 research outputs found

    Anatomy of Soft Tissues of the Spinal Canal

    Get PDF
    Background and Objectives. Important issues regarding the spread of solutions in the epidural space and the anatomy of the site of action of spinal and epidural injections are unresolved. However, the detailed anatomy of the spinal canal has been incompletely determined. We therefore examined the microscopic anatomy of the spinal canal soft tissues, including relationships to the canal walls. Methods. Whole mounts were prepared of decalcified vertebral columns with undisturbed contents from three adult humans. Similar material was prepared from a macaque and baboon immediately on death to control for artifact of tissue change after death. Other tissues examined included nerve root and proximal spinal nerve complex and dorsal epidural fat obtained during surgery. Slides were examined by light microscopy at magnifications of 10-40×. Results. There is no fibrous tissue in the epidural space. The epidural fat is composed of uniform cells enclosed in a fine membrane. The dorsal fat is only attached to the canal wall in the dorsal midline and is often tenuously attached to the dura. The dura is joined to the canal wall only ventrally at the discs. Veins are evident predominantly in the ventral epidural space. Nerve roots are composed of multiple fascicles which disperse as they approach the dorsal root ganglion. An envelope of arachnoid encloses the roots near the site of exit from the dura. Conclusions. These features of the fat explain its semifluid consistency. Lack of substantial attachments to the dura facilitate movement of the dura relative to the canal wall and allow distribution of injected solution. Fibrous barriers are an unlikely explanation for asymmetric epidural anesthesia, but the midline fat could impede solution spread. Details of nerve-root structure and their envelope of pia-arachnoid membrane may be relevant to anesthetic action

    Loop algebras, gauge invariants and a new completely integrable system

    Full text link
    One fruitful motivating principle of much research on the family of integrable systems known as ``Toda lattices'' has been the heuristic assumption that the periodic Toda lattice in an affine Lie algebra is directly analogous to the nonperiodic Toda lattice in a finite-dimensional Lie algebra. This paper shows that the analogy is not perfect. A discrepancy arises because the natural generalization of the structure theory of finite-dimensional simple Lie algebras is not the structure theory of loop algebras but the structure theory of affine Kac-Moody algebras. In this paper we use this natural generalization to construct the natural analog of the nonperiodic Toda lattice. Surprisingly, the result is not the periodic Toda lattice but a new completely integrable system on the periodic Toda lattice phase space. This integrable system is prescribed purely in terms of Lie-theoretic data. The commuting functions are precisely the gauge-invariant functions one obtains by viewing elements of the loop algebra as connections on a bundle over S1S^1

    Exit polling and racial bloc voting: Combining individual-level and R×\timesC ecological data

    Full text link
    Despite its shortcomings, cross-level or ecological inference remains a necessary part of some areas of quantitative inference, including in United States voting rights litigation. Ecological inference suffers from a lack of identification that, most agree, is best addressed by incorporating individual-level data into the model. In this paper we test the limits of such an incorporation by attempting it in the context of drawing inferences about racial voting patterns using a combination of an exit poll and precinct-level ecological data; accurate information about racial voting patterns is needed to assess triggers in voting rights laws that can determine the composition of United States legislative bodies. Specifically, we extend and study a hybrid model that addresses two-way tables of arbitrary dimension. We apply the hybrid model to an exit poll we administered in the City of Boston in 2008. Using the resulting data as well as simulation, we compare the performance of a pure ecological estimator, pure survey estimators using various sampling schemes and our hybrid. We conclude that the hybrid estimator offers substantial benefits by enabling substantive inferences about voting patterns not practicably available without its use.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS353 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Methodology for back-contamination risk assessment for a Mars sample return mission

    Get PDF
    The risk of back-contamination from Mars Surface Sample Return (MSSR) missions is assessed. The methodology is designed to provide an assessment of the probability that a given mission design and strategy will result in accidental release of Martian organisms acquired as a result of MSSR. This is accomplished through the construction of risk models describing the mission risk elements and their impact on back-contamination probability. A conceptual framework is presented for using the risk model to evaluate mission design decisions that require a trade-off between science and planetary protection considerations

    Study of storm time fluxes of heavy ions

    Get PDF
    Ion composition data sets from Lockheed instruments on a variety of spacecraft were used in combination with each other and with data from other instruments to address a variety of problems regarding plasma sources, energization and transport within the magnetosphere. The availability of data from several differing orbits has given a highly flexible approach to attacking the continually evolving questions of magnetospheric physics. This approach is very successful and should be continued in the future

    Reliability of the modified Rankin Scale: a systematic review

    Get PDF
    <p><b>Background and Purpose:</b> A perceived weakness of the modified Rankin Scale is potential for interobserver variability. We undertook a systematic review of modified Rankin Scale reliability studies.</p> <p><b>Methods:</b> Two researchers independently reviewed the literature. Crossdisciplinary electronic databases were interrogated using the following key words: Stroke*; Cerebrovasc*; Modified Rankin*; Rankin Scale*; Oxford Handicap*; Observer variation*. Data were extracted according to prespecified criteria with decisions on inclusion by consensus.</p> <p><b>Results:</b> From 3461 titles, 10 studies (587 patients) were included. Reliability of modified Rankin Scale varied from weighted κ=0.95 to κ=0.25. Overall reliability of mRS was κ=0.46; weighted κ=0.90 (traditional modified Rankin Scale) and κ=0.62; weighted κ=0.87 (structured interview).</p> <p><b>Conclusion:</b> There remains uncertainty regarding modified Rankin Scale reliability. Interobserver studies closest in design to large-scale clinical trials demonstrate potentially significant interobserver variability.</p&gt

    Direct N-body Simulations of Rubble Pile Collisions

    Full text link
    There is increasing evidence that many km-sized bodies in the Solar System are piles of rubble bound together by gravity. We present results from a project to map the parameter space of collisions between km-sized spherical rubble piles. The results will assist in parameterization of collision outcomes for Solar System formation models and give insight into fragmentation scaling laws. We use a direct numerical method to evolve the positions and velocities of the rubble pile particles under the constraints of gravity and physical collisions. We test the dependence of the collision outcomes on impact parameter and speed, impactor spin, mass ratio, and coefficient of restitution. Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as the primordial disk during early planet formation) so that the maximum strain on the component material does not exceed the crushing strength. We compare our results with analytic estimates and hydrocode simulations. Off-axis collisions can result in fast-spinning elongated remnants or contact binaries while fast collisions result in smaller fragments overall. Clumping of debris escaping from the remnant can occur, leading to the formation of smaller rubble piles. In the cases we tested, less than 2% of the system mass ends up orbiting the remnant. Initial spin can reduce or enhance collision outcomes, depending on the relative orientation of the spin and orbital angular momenta. We derive a relationship between impact speed and angle for critical dispersal of mass in the system. We find that our rubble piles are relatively easy to disperse, even at low impact speed, suggesting that greater dissipation is required if rubble piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be published in Icarus

    An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    Get PDF
    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed

    Autonomous power expert system

    Get PDF
    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning
    corecore