17,139 research outputs found
Structural Phases of Bounded Three-Dimensional Screened Coulomb Clusters (Finite Yukawa System)
The formation of three-dimensional (3D) dust clusters within a complex plasma
modeled as a spatially confined Yukawa system is simulated using the box_tree
code. Similar to unscreened Coulomb clusters, the occurrence of concentric
shells with characteristic occupation numbers was observed. Both the occupation
numbers and radii were found to depend on the Debye length. Ground and low
energy meta-stable states of the shielded 3D Coulomb clusters were determined
for 4<N<20. The structure and energy of the clusters in different states was
analyzed for various Debye lengths. Structural phase transitions, including
inter-shell structural phase transitions and intra-shell structural phase
transitions, were observed for varying Debye length and the critical value for
transitions calculated
On the inverse Compton scattering model of radio pulsars
Some characteristics of the inverse Compton scattering (ICS) model are
reviewed. At least the following properties of radio pulsars can be reproduced
in the model: core or central emission beam, one or two hollow emission cones,
different emission heights of these components, diverse pulse profiles at
various frequencies, linear and circular polarization features of core and
cones.Comment: 5 pages, no figures, LaTeX, a proceeding paper for Pacific Rim
Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin
Donor complex formation due to a high-dose Ge implant into Si
To investigate boron deactivation and/or donor complex formation due to a highâdose Ge and C implantation and the subsequent solid phase epitaxy, SiGe and SiGeC layers were fabricated and characterized. Crossâsectional transmission electron microscopy indicated that the SiGe layer with a peak Ge concentration of 5 at.â% was strained; whereas, for higher concentrations, stacking faults were observed from the surface to the projected range of the Ge as a result of strain relaxation. Photoluminescence (PL) results were found to be consistent with dopant deactivation due to Ge implantation and the subsequent solid phase epitaxial growth of the amorphous layer. Furthermore, for unstrained SiGe layers (Ge peak concentration â„7 at.â%), the PL results support our previously proposed donor complex formation. These findings were confirmed by spreading resistance profiling. A model for donor complex formation is proposed
Asymmetry in Photoproduction
By adopting two models of strange and antistrange quark distributions inside
nucleon, the light-cone meson-baryon fluctuation model and the effective chiral
quark model, we calculate the asymmetry in photoproduction in
the framework of heavy-quark recombination mechanism. We find that the effect
of asymmetry of strange sea to the asymmetry is considerable and
depending on the different models. Therefore, we expect that with the further
study in electroproduction, e.g. at HERA and CEBAF, the experimental
measurements on the asymmetry may impose a strong restriction
on the strange-antistrange distribution asymmetry models.Comment: 4 pages, talk presented by I. Caprini at the International Conference
on QCD and Hadronic Physics, June 16-20 2005, Beijin
Optimal universal programmable detectors for unambiguous discrimination
We discuss the problem of designing unambiguous programmable discriminators
for any n unknown quantum states in an m-dimensional Hilbert space. The
discriminator is a fixed measurement that has two kinds of input registers: the
program registers and the data register. The quantum state in the data register
is what users want to identify, which is confirmed to be among the n states in
program registers. The task of the discriminator is to tell the users which
state stored in the program registers is equivalent to that in the data
register. First, we give a necessary and sufficient condition for judging an
unambiguous programmable discriminator. Then, if , we present an optimal
unambiguous programmable discriminator for them, in the sense of maximizing the
worst-case probability of success. Finally, we propose a universal unambiguous
programmable discriminator for arbitrary n quantum states.Comment: 7 page
Proximity induced pseudogap in mesoscopic superconductor/normal-metal bilayers
Recent scanning tunneling microscopy measurements of the proximity effect in
Au/LaSrCuO and
LaSrCuO/LaSrCuO bilayers showed a
proximity-induced pseudogap [Yuli et al., Phys. Rev. Lett. {\bf 103}, 197003
(2009)]. We describe the proximity effect in mesoscopic
superconductor/normal-metal bilayers by using the Bogoliubov-de Gennes
equations for a tight-binding Hamiltonian with competing antiferromagnetic and
d-wave superconductivity orders . The temperature dependent local density of
states is calculated as a function of the distance from the interface. Bound
state due to both d-wave and spin density wave gaps are formed in the normal
metal for energies less than the respective gaps. If there is a mismatch
between the Fermi velocities in the two layers we observe that these states
will shift in energy when spin density wave order is present, thus inducing a
minigap at finite energy. We conclude that the STM measurement in the proximity
structures is able to distinguish between the two scenarios proposed for the
pseudogap (competing or precursor to superconductivity)
DDSL: Efficient Subgraph Listing on Distributed and Dynamic Graphs
Subgraph listing is a fundamental problem in graph theory and has wide
applications in areas like sociology, chemistry, and social networks. Modern
graphs can usually be large-scale as well as highly dynamic, which challenges
the efficiency of existing subgraph listing algorithms. Recent works have shown
the benefits of partitioning and processing big graphs in a distributed system,
however, there is only few work targets subgraph listing on dynamic graphs in a
distributed environment. In this paper, we propose an efficient approach,
called Distributed and Dynamic Subgraph Listing (DDSL), which can incrementally
update the results instead of running from scratch. DDSL follows a general
distributed join framework. In this framework, we use a Neighbor-Preserved
storage for data graphs, which takes bounded extra space and supports dynamic
updating. After that, we propose a comprehensive cost model to estimate the I/O
cost of listing subgraphs. Then based on this cost model, we develop an
algorithm to find the optimal join tree for a given pattern. To handle dynamic
graphs, we propose an efficient left-deep join algorithm to incrementally
update the join results. Extensive experiments are conducted on real-world
datasets. The results show that DDSL outperforms existing methods in dealing
with both static dynamic graphs in terms of the responding time
Thermally Activated Reversible Threshold Shifts in Yba\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-ÎŽ\u3c/sub\u3e/Yttria-Stabilized Zirconia/Si Capacitors
Yba2Cu3O7-ÎŽ/yttriaâstabilized zirconia (YSZ)/silicon superconductorâinsulatorâsemiconductor capacitors are characterized with capacitanceâvoltage (CâV) measurements at different gateâvoltage sweep rates and under biasâtemperature cycling. It is shown that ionic conduction in YSZ causes both hysteresis and stretchâout in roomâtemperature CâV curves. A thermally activated process with an activation energy of about 39 meV in YSZ and/or at YSZ/Si interface is attributed to trapping/detrapping mechanisms in the SiOx interfacial layer between YSZ and Si. The negative mobile ions in YSZ can be moved by an applied electric field at room temperature and then ââfrozenââ with decreasing temperature, giving rise to adjustable threshold voltages at low temperatures
- âŠ