5,492 research outputs found
Endoood: Uncertainty-Aware Out-of-Distribution Detection in Capsule Endoscopy Diagnosis
Wireless capsule endoscopy (WCE) is a non-invasive diagnostic procedure that enables visualization of the gastrointestinal (GI) tract. Deep learning-based methods have shown effectiveness in disease screening using WCE data, alleviating the burden on healthcare professionals. However, existing capsule endoscopy classification methods mostly rely on predefined categories, making it challenging to identify and classify out-of-distribution (OOD) data, such as undefined categories or anatomical landmarks. To address this issue, we propose the Endoscopy Out-Of-Distribution (EndoOOD) framework, which aims to effectively handle the OOD detection challenge in WCE diagnosis. The proposed framework focuses on improving the robustness and reliability of WCE diagnostic capabilities by incorporating uncertainty-aware mixup training and long-tailed in-distribution (ID) data calibration techniques. Additionally, virtual-logit matching is employed to accurately distinguish between OOD and ID data while minimizing information loss. To assess the performance of our proposed solution, we conduct evaluations and comparisons with 12 state-of-the-art (SOTA) methods using two publicly available datasets. The results demonstrate the effectiveness of the proposed framework in enhancing diagnostic accuracy and supporting clinical decision-making
Lab scale studies on water hyacinth (Eichhornia crassipes Marts Solms) for biotreatment of textile wastewater
Textile wastewater contains substantial pollution loads in terms of Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Total Suspended Solids (TSS), Total Dissolved Solids (TDS) and heavy metals. Phytoremediation used for removing heavy metals and other pollutants by aquatic macrophytes treatment systems (AMATS) is well established environmental protective technique. A lab scale study was conducted to test the feasibility of water hyacinth for treating textile wastewater. The pH was reduced from alkaline to nearly neutral in all cases studied with the introduction of water hyacinth. The maximum reduction in the conductivity was 55.71% while the BOD and COD reduction ranged from 40 to 70%. A great deal of reduction in the total solids was noted in all the waste samples with a maximum reduction of 50.64%. Water hyacinth has tremendous potential to absorb heavy metals from the textile wastewater as it resulted in 94.78% reduction of chromium, 96.88% in zinc and 94.44 % reduction in copper. ANOVA showed a significant (p<0.05) reduction in all the pollutants with the passage of time. Thus water hyacinth can be an efficient biological agent in reducing the pollution loads in textile industry wastewater
Application of CRISPR/Cas9 in crop quality improvement
The various crop species are major agricultural products and play an indispensable role in sustaining human life. Over a long period, breeders strove to increase crop yield and improve quality through traditional breeding strategies. Today, many breeders have achieved remarkable results using modern molecular technologies. Recently, a new gene-editing system, named the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, has also succeeded in improving crop quality. It has become the most popular tool for crop improvement due to its versatility. It has accelerated crop breeding progress by virtue of its precision in specific gene editing. This review summarizes the current application of CRISPR/Cas9 technology in crop quality improvement. It includes the modulation in appearance, palatability, nutritional components and other preferred traits of various crops. In addition, the challenge in its future application is also discussed
Comprehensive mechanism of gene silencing and its role in plant growth and development
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5′ untranslated region (5′UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production
Unveiling the gut bacteriome diversity and distribution in the national fish hilsa (Tenualosa ilisha) of Bangladesh
The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species
A scheme for rain gauge network design based on remotely sensed rainfall measurements
A remarkable decline in the number of rain gauges is being faced in many areas of the world, as a compromise to the expensive cost of operating and maintaining rain gauges. The question of how to effectively deploy new or remove current rain gauges in order to create optimal rainfall information is becoming more and more important. On the other hand, larger-scaled, remotely sensed rainfall measurements, although poorer quality compared with traditional rain gauge rainfall measurements, provide an insight into the local storm characteristics, which are sought by traditional methods for designing a rain gauge network. Based on these facts, this study proposes a new methodology for rain gauge network design using remotely sensed rainfall datasets that aims to explore how many gauges are essential and where they should be placed. Principal component analysis (PCA) is used to analyze the redundancy of the radar grid network and to determine the number of rain gauges while the potential locations are determined by cluster analysis (CA) selection. The proposed methodology has been performed on 373 different storm events measured by a weather radar grid network and compared against an existing dense rain gauge network in southwestern England. Because of the simple structure, the proposed scheme could be easily implemented in other study areas. This study provides a new insight into rain gauge network design that is also a preliminary attempt to use remotely sensed data to solve the traditional rain gauge problems
Topological transitions in carbon nanotube networks via nanoscale confinement
Efforts aimed at large-scale integration of nanoelectronic devices that
exploit the superior electronic and mechanical properties of single-walled
carbon nanotubes (SWCNTs) remain limited by the difficulties associated with
manipulation and packaging of individual SWNTs. Alternative approaches based on
ultra-thin carbon nanotube networks (CNNs) have enjoyed success of late with
the realization of several scalable device applications. However, precise
control over the network electronic transport is challenging due to i) an often
uncontrollable interplay between network coverage and its topology and ii) the
inherent electrical heterogeneity of the constituent SWNTs. In this letter, we
use template-assisted fluidic assembly of SWCNT networks to explore the effect
of geometric confinement on the network topology. Heterogeneous SWCNT networks
dip-coated onto sub-micron wide ultra-thin polymer channels exhibit a topology
that becomes increasingly aligned with decreasing channel width and thickness.
Experimental scale coarse-grained computations of interacting SWCNTs show that
the effect is a reflection of an aligned topology that is no longer dependent
on the network density, which in turn emerges as a robust knob that can induce
semiconductor-to-metallic transitions in the network response. Our study
demonstrates the effectiveness of directed assembly on channels with varying
degrees of confinement as a simple tool to tailor the conductance of the
otherwise heterogeneous network, opening up the possibility of robust
large-scale CNN-based devices.Comment: 4 pages, 3 figure
Numerical Study of Circularly Slotted Highly Sensitive Plasmonic Biosensor : A Novel Approach
Funding Information: This work was supported by the Deanship of the Scientific Research ( DSR ), King Abdulaziz University , Jeddah, under grant No. ( DF-773-135-1441 ). The authors, therefore, gratefully acknowledge DSR technical and financial support.Peer reviewe
- …