16 research outputs found

    Multi-area Environmentally Constrained Active-reactive Optimal Power Flow: A Short-term Tie Line Planning Study

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)This study presents a tie line planning and its effects on the operating cost and environmental issues of power systems via a novel multi-area active-reactive optimal power flow (MA-AROPF) model. In this study, the authors focus on the significant role of tie line planning on power system operation. To select an appropriate tie line, a modified sensitivity index is used, which not only reduces the operating cost and emissions, but also enhances the voltage stability of individual areas and the entire power system. These benefits are obtained by increasing the degree of freedom of the power system through providing uniform economic and emission dispatch. Moreover, in this study, to address the drawbacks of commonly used decomposition methods for solving MA-AROPF, an integrated model is proposed. An AROPF that considers the environmental effects is a highly non-linear problem, and the multi-area consideration of such problems via tie line planning makes it an even more complicated and exceedingly non-linear problem. For didactic purposes and to verify the model, a small two-area system is considered in detail, while to show the effectiveness of the proposed approach, a three-area system consisting of 14-, 30-, and 118-bus IEEE test systems is conducted.10299309FAPESP [2014/22828-3, 2013/23590-8]CAPESCNPq [305371/2012-6]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    An effortless hybrid method to solve economic load dispatch problem in power systems

    No full text
    This paper proposes a new approach and coding scheme for solving economic dispatch problems (ED) in power systems through an effortless hybrid method (EHM). This novel coding scheme can effectively prevent futile searching and also prevents obtaining infeasible solutions through the application of stochastic search methods, consequently dramatically improves search efficiency and solution quality. The dominant constraint of an economic dispatch problem is power balance. The operational constraints, such as generation limitations, ramp rate limits, prohibited operating zones (POZ), network loss are considered for practical operation. Firstly, in the EHM procedure, the output of generator is obtained with a lambda iteration method and without considering POZ and later in a genetic based algorithm this constraint is satisfied. To demonstrate its efficiency, feasibility and fastness, the EHM algorithm was applied to solve constrained ED problems of power systems with 6 and 15 units. The simulation results obtained from the EHM were compared to those achieved from previous literature in terms of solution quality and computational efficiency. Results reveal that the superiority of this method in both aspects of financial and CPU time. (C) 2011 Elsevier Ltd. All rights reserved

    Transmission Expansion Planning Via a Constructive Heuristic Algorithm in Restructured Electricity Industry

    No full text
    The transmission expansion planning problem in modern power systems is a large-scale, mixed-integer, nonlinear and non-convex problem. this paper presents a new mathematical model and a constructive heuristic algorithm (CHA) for solving transmission expansion planning problem under new environment of electricity restructuring. CHA finds an acceptable solution in an iterative process, where in each step a circuit is chosen using a sensitivity index and added to the system. The proposed model consider multiple generation scenarios therefore the methodology finds high quality solution in which it allows the power system operate adequacy in an environment with multiple generators scenarios. Case studies and simulation results using test systems show possibility of using Constructive heuristic algorithm in an open access system

    A Modified Branch and Bound Algorithm to Solve the Transmission Expansion Planning Problem

    No full text
    In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems

    Congestion Effects on Regional & System Emission and Consumers Allocated Cost

    No full text
    This paper considers the congestion effects on emission and consumers' allocated cost. In order to consider some environmental and operational effects of congestion, an environmental constrained active-reactive optimal power flow (AROPF) considering capability curve is presented. On outage conditions, the total cost of the system will increase. On the other hand in power systems, the operating cost and system emission have conflicted objectives, then it may be concluded that the outage in the system may lead to a total emission decrease. In this paper the famous Aumann-Shapley method is used as a pricing methodology. Two case studies such as 14-bus and US-bus IEEE test systems are conducted. Results demonstrate that, although the line outage in power systems leads to increase the total cost, the amount of emission depending on the place where the outage occurs can be more than, less than or equal to the normal conditions' emission. Also results show that although from power sellers' standpoint the well-known Aumann-Shapley method is a precise pricing method to cover the incurred cost with an acceptable error that can show the real effect of congestion on consumers' cost, from consumers' standpoint it is not a good method for cost allocation, because some consumers will face with an increase in cost and the others will face with a decrease on their cost

    An unproblematic method to solve economic and emission dispatch

    No full text
    This paper proposes a method to determine the output of all online units with minimum total cost when the amount of emission is reasonable. A joint economic and emission dispatch is proposed in order to get a significant compromise between costs and emission such that real power supply-demand equilibrium is satisfied. In order to have a meaningful compromise between costs and emission in the problem formulation, two variables are used, weighting factor and price penalty factor. A case study comprising of a 3-unit power system is employed, where various demand is used. Results for the test system indicate the fastness and effectiveness of proposed method. © 2011 IEEE

    Decentralized AC Optimal Power Flow Problem Considering Prohibited Operating Zones

    No full text
    Funding Information: Lucas do Carmo Yamaguti, Juan M. Home-Ortiz, and José Roberto Sanches Mantovani acknowledge the support of the São Paulo Research Foundation (FAPESP) under grants 2019/01841-5 2015/21972-6, the support of the Coordination for the Improvement of Higher Education Personnel (CAPES) finance code 001, and the support of the Brazilian National Council for Scientific and Technological Development (CNPq) under Grant 304726/2020-6. Publisher Copyright: © 2022 IEEE.The Optimal Power Flow (OPF) problem is commonly formulated considering one central operator manager (centralized approach). However, in practice, the power system is structured by interconnected areas, controlled by several system operators, which are dependent on their neighbors and must exchange sensitive data with each other. In addition, some generation units must be restricted in some zones of operation to avoid negative operational effects. This paper proposes a mixed-integer nonlinear programming model to solve the decentralized AC-OPF considering prohibited operation zones (POZ). A matheuristic algorithm based on the variable neighborhood descent heuristic method is used to deal with the integer variables of the problem, while a non-linear optimization solver is used to solve the optimal power flow with continuous variables. The proposed model and solution technique are validated using the IEEE 118-bus system, ensuring that the decentralized model determines solutions close to the centralized model without and with POZ constraints.Peer reviewe

    A Mixed Integer Conic Model for Distribution Expansion Planning

    No full text
    This paper presents a mixed-integer conic programming model (MICP) and a hybrid solution approach based on classical and heuristic optimization techniques, namely matheuristic, to handle long-term distribution systems expansion planning (DSEP) problems. The model considers conventional planning actions as well as sizing and allocation of dispatchable/renewable distributed generation (DG) and energy storage devices (ESD). The existing uncertainties in the behavior of renewable sources and demands are characterized by grouping the historical data via the k-means. Since the resulting stochastic MICP is a convex-based formulation, finding the global solution of the problem using a commercial solver is guaranteed while the computational efficiency in simulating the planning problem of medium-or large-scale systems might not be satisfactory. To tackle this issue, the subproblems of the proposed mathematical model are solved iteratively via a specialized optimization technique based on variable neighborhood descent (VND) algorithm. To show the effectiveness of the proposed model and solution technique, the 24-node distribution system is profoundly analyzed, while the applicability of the model is tested on a 182-node distribution system. The results reveal the essential requirement of developing specialized solution techniques for large-scale systems where classical optimization techniques are no longer an alternative to solve such planning problems.Peer reviewe

    A stochastic mixed-integer convex programming model for long-term distribution system expansion planning considering greenhouse gas emission mitigation

    No full text
    This paper proposes a multistage convex distribution system planning model to find the best reinforcement plan over a specified horizon. This strategy determines planning actions such as reinforcement of existing substations, conductor replacement of overloaded feeders, and siting and sizing of renewable and dispatchable distributed generation units. Besides, the proposed approach aims at mitigating the greenhouse gas emissions of electric power distribution systems via a monetary form. Inherently, this problem is a non-convex optimization model that can be an obstacle to finding the optimal global solution. To remedy this issue, convex envelopes are used to recast the original problem into a mixed integer conic programming (MICP) model. The MICP model guarantees convergence to optimal global solution by using existing commercial solvers. Moreover, to address the prediction errors in wind output power and electricity demands, a two-stage stochastic MICP model is developed. To validate the proposed model, detail analysis is carried out over various case studies of a 34-node distribution system under different conditions, while to show its potential and effectiveness a 135-node system with two substations is used. Numerical results confirm the effectiveness of the proposed planning scheme in obtaining an economic investment plan at the presence of several planning alternatives and to promote an environmentally committed electric power distribution network.Peer reviewe
    corecore