32 research outputs found

    Structure and Novel Functional Mechanism of Drosophila SNF in Sex-Lethal Splicing

    Get PDF
    Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination

    Cell-type-specific expression of the rat thyroperoxidase promoter indicates common mechanisms for thyroid-specific gene expression.

    No full text
    A 420-bp fragment from the 5' end of the rat thyroperoxidase (TPO) gene was fused to a luciferase reporter and shown to direct cell-type-specific expression when transfected into rat thyroid FRTL-5 cells. Analysis of this DNA fragment revealed four regions of the promoter which interact with DNA-binding proteins present in FRTL-5 cells. Mutation of the DNA sequence within any of these regions reduced TPO promoter activity. The trans-acting factors binding to these sequences were compared with thyroid transcription factor 1 (TTF-1) and TTF-2, previously identified as transcriptional activators of another thyroid-specific gene, the thyroglobulin (Tg) gene. Purified TTF-1 binds to three regions of TPO which are protected by FRTL-5 proteins. Two of the binding sites overlap with recognition sites for other DNA-binding proteins. One TTF-1 site can also bind a protein (UFB) present in the nuclei of both expressing and nonexpressing cells. TTF-1 binding to the proximal region overlaps with that for a novel protein present in FRTL-5 cells which can also recognize the promoter-proximal region of Tg. Using a combination of techniques, the factor binding to the fourth TPO promoter site was shown to be TTF-2. We conclude, therefore, that the FRTL-5-specific expression of two thyroid restricted genes, encoding TPO and Tg, relies on a combination of the same trans-acting factors present in thyroid cells
    corecore