318 research outputs found

    A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis

    Get PDF
    The concept of Industry 5.0 (I5.0) promotes the human-centricity as the core value behind the evolution of smart manufacturing systems (SMSs), based on a novel use of digital technologies in the design and management of modern industrial systems to take up the socio-technical challenges. In this context, the paper proposes a Smart Manufacturing Systems Design (SMSD) framework enabling I5.0, based on the human-automation symbiosis. Thanks to an 'Augmented Digital Twin' (ADT) able to integrate and digitize all the entities of the factory (i.e. machines, robots, environments, interfaces, people), AI-driven applications can be built to support the user domain and make people and machines co-evolve thanks to a systematic data sharing between physical and digital assets (e.g. digital twin, virtual mock-ups, human-machine interfaces), optimizing factory productivity and workers wellbeing. In this framework, machines and humans can both generate knowledge and learn from each other, generating a virtuous co-evolution, supporting the understanding of the human-machine interplay and the creation of an effective collaboration between people and SMSs. The framework was conceived and validated involving four industrial companies, belonging to diverse sectors, interested in overcoming the current limits of I4.0 lines by including the human factors for future SMS management

    Non-Uniform Planar Slicing for Robot-Based Additive Manufacturing

    Get PDF
    Planar slicing algorithms with constant layer thickness are widely implemented for geometry processing in Additive Manufacturing (AM). Since the build direction is fixed, a staircase effect is produced, decreasing the final surface finish. Also, support structures are required for overhanging portions. To overcome such limits, AM is combined with manipulators and working tables with multiple degrees of freedom. This is called Robot-Based Additive Manufacturing (RBAM) and it aims to increase the manufacturing flexibility of traditional printers, enabling the deposition of material in multiple directions. In particular, the deposition direction is changed at each layer requiring non-uniform thickness slicing. The total number of layers, as well as the volume of the support structures and the manufacturing time are reduced, while the surface finish and mechanical performance of the final product are increased. This paper presents an algorithm for non-uniform planar slicing developed in Rhinoceros and Grasshopper. It processes the input geometry and uses parameters to capture manufacturing limits. It mostly targets curved geometries to remove the need for support structures, also increasing the part quality

    An approach based on VR to design industrial human-robot collaborative workstations

    Get PDF
    This paper presents an integrated approach for the design of human-robot collaborative workstations in industrial shop floors. In particular, the paper presents how to use virtual reality (VR) technologies to support designers in the creation of interactive workstation prototypes and in early validation of design outcomes. VR allows designers to consider and evaluate in advance the overall user experience, adopting a user-centered perspective. The proposed approach relies on two levels: the first allows designers to have an automatic generation and organization of the workstation physical layout in VR, starting from a conceptual description of its functionalities and required tools; the second aims at supporting designers during the design of human-machine interfaces (HMIs) by interaction mapping, HMI prototyping and testing in VR. The proposed approach has been applied on two realistic industrial case studies related to the design of an intensive warehouse and a collaborative assembly workstation for automotive industry, respectively. The two case studies demonstrate how the approach is suited for early prototyping of complex environments and human-machine interactions by taking into account the user experience from the early phases of design

    A method for the assessment and compensation of positioning errors in industrial robots

    Get PDF
    Industrial Robots (IR) are currently employed in several production areas as they enable flexible automation and high productivity on a wide range of operations. The IR low positioning performance, however, has limited their use in high precision applications, namely where positioning errors assume importance for the process and directly affect the quality of the final products. Common approaches to increase the IR accuracy rely on empirical relations which are valid for a single IR model. Also, existing works show no uniformity regarding the experimental procedures followed during the IR performance assessment and identification phases. With the aim to overcome these restrictions and further extend the IR usability, this paper presents a general method for the evaluation of IR pose and path accuracy, primarily focusing on instrumentation and testing procedures. After a detailed description of the experimental campaign carried out on a KUKA KR210 R2700 Prime robot under different operating conditions (speed, payload and temperature state), a novel online compensation approach is presented and validated. The position corrections are processed with an industrial PC by means of a purposely developed application which receives as input the position feedback from a laser tracker. Experiments conducted on straight paths confirmed the validity of the proposed approach, which allows remarkable reductions (in the order of 90%) of the orthogonal deviations and in-line errors during the robot movements

    A review of geometry representation and processing methods for cartesian and multiaxial robot-based additive manufacturing

    Get PDF
    Nowadays, robot-based additive manufacturing (RBAM) is emerging as a potential solution to increase manufacturing flexibility. Such technology allows to change the orientation of the material deposition unit during printing, making it possible to fabricate complex parts with optimized material distribution. In this context, the representation of parts geometries and their subsequent processing become aspects of primary importance. In particular, part orientation, multiaxial deposition, slicing, and infill strategies must be properly evaluated so as to obtain satisfactory outputs and avoid printing failures. Some advanced features can be found in commercial slicing software (e.g., adaptive slicing, advanced path strategies, and non-planar slicing), although the procedure may result excessively constrained due to the limited number of available options. Several approaches and algorithms have been proposed for each phase and their combination must be determined accurately to achieve the best results. This paper reviews the state-of-the-art works addressing the primary methods for the representation of geometries and the subsequent geometry processing for RBAM. For each category, tools and software found in the literature and commercially available are discussed. Comparison tables are then reported to assist in the selection of the most appropriate approaches. The presented review can be helpful for designers, researchers and practitioners to identify possible future directions and open issues

    Path Approximation Strategies for Robot Manufacturing: A Preliminary Experimental Evaluation

    Get PDF
    Industrial Robots (IRs) are increasingly adopted for material subtraction or deposition functions owing to their advantages over machine tools, like cost-effectiveness and versatility. Unfortunately, the development of efficient robot manufacturing processes still faces unsolved issues related to the IRs poor positioning accuracy and to the tool path generation process. Novel engineering methods and tools are needed for CAD based programming of accurate paths and continuous robot motions to obtain the required manufacturing quality and tolerances. Within this context, to achieve smoothness along the tool path formed by linear G-code segments, the IR controllers’ approximation strategies, summarily reported in the manufacturer’s manuals, must be considered. The aim of this paper is to present the preliminary work carried out to identify the approximation algorithms of a Kuka IR when executing linear moves. An experimental study is conducted by varying the controller settings and the maximum translational velocity. The robot behavior has been acquired thanks to the controller tracing function and then processed to yield relations readily employable for the interpretation of G-Code commands and the subsequent generation of proper robot motion instructions. The obtained formulas allow to accurately predict the robot geometric path and kinematics within the corner transition between two linear segments

    Preface

    Get PDF

    Exploring how to use virtual tours to create an interactive customer remote experience

    Get PDF
    This paper investigates the use of Virtual Reality (VR) to develop virtual tour applications for marketing purposes. The aim is to explore how virtual technologies can support the creation of knowledge about a specific food product and the achievement of user engagement by a multi-sensory virtual tour of the real production site. The study provides design guidelines to create a valuable, multisensory experience by VR tours and demonstrate how the adoption of a user-driven approach, instead of a technology-driven approach, allows to achieve a positive intention to buy. The case study was represented by one of the excellences among Italian food products, the Parmigiano Reggiano (PR) cheese. The PR virtual tour was validated by a user testing campaign, involving more than 70 users: users' reactions and feedback were collected by human physiological data monitoring and questionnaires' administration. The research results demonstrated how virtual technologies could effectively help people to create a solid knowledge about a food product to support the marketing process and to form an intention to buy thanks to a better understanding of the quality of the local and traditional productions
    • …
    corecore