592 research outputs found

    Normal State Nernst Effect in Electron-doped Pr2-xCexCuO4: Superconducting Fluctuations and Two-band Transport

    Full text link
    We report a systematic study of normal state Nernst effect in the electron-doped cuprates Pr2−x_{2-x}Cex_xCuO4−δ_{4-\delta} over a wide range of doping (0.05≤x≤\leq x \leq0.21) and temperature. At low temperatures, we observed a notable vortex Nernst signal above Tc_c in the underdoped films, but no such normal state vortex Nernst signal is found in the overdoped region. The superconducting fluctuations in the underdoped region are most likely incoherent phase fluctuations as found in hole-doped cuprates. At high temperatures, a large normal state Nernst signal is found at dopings from slightly underdoped to highly overdoped. Combined with normal state thermoelectric power, Hall effect and magnetoresistance measurements, the large Nernst effect is compatible with two-band model. For the highly overdoped films, the large Nernst effect is anomalous and not explainable with a simple hole-like Fermi surface seen in photoemission experiments.Comment: 9 pages, 8 figures, accepted in PR

    Correlation between incoherent phase fluctuations and disorder in Y1−x_{1-x}Prx_xBa2_2Cu3_3O7−δ_{7-\delta} epitaxial films from Nernst effect measurements

    Get PDF
    Measurements of Nernst effect, resistivity and Hall angle on epitaxial films of Y1−x_{1-x}Prx_xBa2_2Cu3_3O7−δ_{7-\delta}(Pr-YBCO, 0≤x≤\leq x\leq0.4) are reported over a broad range of temperature and magnetic field. While the Hall and resistivity data suggest a broad pseudogap regime in accordance with earlier results, these first measurements of the Nernst effect on Pr-YBCO show a large signal above the superconducting transition temperature(Tc_c). This effect is attributed to vortex-like excitations in the phase incoherent condensate existing above Tc_c. A correlation between disorder and the width of the phase fluctuation regime has been established for the YBCO family of cuprates, which suggests a Tc≈_c\approx110K for disorder-free YBa2_2Cu3_3O7−δ_{7-\delta}.Comment: 5 pages, 6 figure

    Spin Susceptibility of the Topological Superconductor UPt3 from Polarized Neutron Diffraction

    Full text link
    Experiment and theory indicate that UPt3 is a topological superconductor in an odd-parity state, based in part from temperature independence of the NMR Knight shift. However, quasiparticle spin-flip scattering near a surface, where the Knight shift is measured, might be responsible. We use polarized neutron scattering to measure the bulk susceptibility with H||c, finding consistency with the Knight shift but inconsistent with theory for this field orientation. We infer that neither spin susceptibility nor Knight shift are a reliable indication of odd-parity

    Destruction of Neel order and appearance of superconductivity in electron-doped cuprates by oxygen annealing process

    Full text link
    We use thermodynamic and neutron scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr0.88_{0.88}LaCe0.12_{0.12}CuO4−δ_{4-\delta}. Although the transition temperature TcT_c measured by susceptibility and superconducting coherence length increase smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific heat anomaly at TcT_c and the presence of a neutron magnetic resonance, only appears abruptly when TcT_c is close to the largest value. These results suggest that the effect of oxygen annealing must be first determined in order to establish a Ce-doping dependence of antiferromagnetism and superconductivity phase diagram for electron-doped copper oxides.Comment: 5 pages, 4 figures, accepted by Phys. Rev.
    • …
    corecore