1,100 research outputs found
Planar photonic crystal
We present results of guiding light in a single-line-defect planar photonic crystal (PPC) waveguide with 90° and 60° bends. The wave guiding is obtained by total internal reflection perpendicular to the plane of propagation and by the photonic band gap for the 2D photonic crystal in the plane. The results for photonic waveguiding are shown and demonstrated at 1.5 µm wavelength
Photonic Crystal Cavities and Waveguides
Recently, it has also become possible to microfabricate high reflectivity mirrors by creating two- and three-dimensional periodic structures. These periodic "photonic crystals" can be designed to open up frequency bands within which the propagation of electromagnetic waves is forbidden irrespective of the propagation direction in space and define photonic bandgaps. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide us with the geometries needed to confine and concentrate light into extremely small volumes and to obtain very high field intensities. Here we show the use of these "artificially" microfabricated crystals in functional nonlinear optical devices, such as lasers, modulators, and waveguides
Ultra narrow AuPd and Al wires
In this letter we discuss a novel and versatile template technique aimed to
the fabrication of sub-10 nm wide wires. Using this technique, we have
successfully measured AuPd wires, 12 nm wide and as long as 20 m. Even
materials that form a strong superficial oxide, and thus not suited to be used
in combination with other techniques, can be successfully employed. In
particular we have measured Al wires, with lateral width smaller or comparable
to 10 nm, and length exceeding 10 m.Comment: 4 pages, 4 figures. Pubblished in APL 86, 172501 (2005). Added
erratum and revised Fig.
Cladding strategies for building-integrated photovoltaics
Photovoltaic cladding on the surfaces of commercial buildings has the potential for considerable reductions in carbon emissions due to embedded renewable power generation displacing conventional power utilization. In this paper, a model is described for the optimization of photovoltaic cladding densities on commercial building surfaces. The model uses a modified form of the ‘fill factor’ method for photovoltaic power supply coupled to new regression-based procedures for power demand estimation. An optimization is included based on a defined ‘mean index of satisfaction’ for matched power supply and demand (i.e., zero power exportation to the grid). The mean index of satisfaction directly translates to the reduction in carbon emission that might be expected over conventional power use. On clear days throughout the year, reductions of conventional power use of at least 60% can be achieved with an optimum cladding pattern targeted to lighting and small power load demands
Routine data linkage to identify and monitor diabetes in clozapine-treated patients with schizophrenia
No abstract available
Antimicrobial Susceptibility Trends Observed in Urinary Pathogens Obtained From New York State
International guidelines recommend using local susceptibility data to direct empiric therapy for acute uncomplicated cystitis. We evaluated outpatient urinary isolate susceptibility trends in New York State. Nitrofurantoin had the lowest resistance prevalence whereas trimethoprim-sulfamethoxazole and fluoroquinolones had higher prevalences. This study highlights the need for local outpatient antimicrobial stewardship programs
PLANTAR FORCE MEASURES DURING FORWARD SKATING IN ICE HOCKEY
The purpose of this project was to measure plantar pressure patterns during forward skating with ice hockey skates. Six elite ice hockey inter-university players volunteered to participate in the study. There was no significant change in push off force with velocity, but there was a decrease in contact time with increasing velocity. Given the decreased impulse with increasing speed, the increase in propulsion was the result of increasing stride rate. Comparison between anterior and posterior plantar regions as well as the medial and lateral regions revealed proportional loading changes with different speeds
Transmission of pillar-based photonic crystal waveguides in InP technology
Waveguides based on line defects in pillar photonic crystals have been fabricated in InP/InGaAsP/InP technology. Transmission measurements of different line defects are reported. The results can be explained by comparison with two-dimensional band diagram simulations. The losses increase substantially at mode crossings and in the slow light regime. The agreement with the band diagrams implies a good control on the dimensions of the fabricated features, which is an important step in the actual application of these devices in photonic integrated circuit
Charge and spin distributions in GaMnAs/GaAs Ferromagnetic Multilayers
A self-consistent electronic structure calculation based on the
Luttinger-Kohn model is performed on GaMnAs/GaAs multilayers. The Diluted
Magnetic Semiconductor layers are assumed to be metallic and ferromagnetic. The
high Mn concentration (considered as 5% in our calculation) makes it possible
to assume the density of magnetic moments as a continuous distribution, when
treating the magnetic interaction between holes and the localized moment on the
Mn(++) sites. Our calculation shows the distribution of heavy holes and light
holes in the structure. A strong spin-polarization is observed, and the charge
is concentrated mostly on the GaMnAs layers, due to heavy and light holes with
their total angular momentum aligned anti-parallel to the average
magnetization. The charge and spin distributions are analyzed in terms of their
dependence on the number of multilayers, the widths of the GaMnAs and GaAs
layers, and the width of lateral GaAs layers at the borders of the structure.Comment: 12 pages,7 figure
- …