11 research outputs found

    Reakcja fizjologiczna Brassica napus L. na działanie miedzi(II)

    No full text
    Rośliny rzepaku poddawano działaniu CuSO4 5H2O w siedmiu różnych stężeniach (0,5, 1, 3, 6, 12, 24, 60 μmol · dm–3) przez 7 dni. W zakresie stężeń 0,5-3 μmol·dm–3 zaobserwowano znaczny wzrost biomasy (obie części roślin). Zmniejszenie biomasy zauważono po zastosowaniu wyższych stężeń niż 6 μmol ·dm–3. Znaczny spadek zawartości chlorofili oraz karotenoidów stwierdzono po zastosowaniu 6 μmoli · dm–3 Cu(II). Spadek zawartości białka w liściach roślin zaobserwowano w zakresie stężeń 3-60 μmol · dm–3. Peroksydacja lipidów wyrażona zawartością dialdehydu malonowego w liściach była silna w zakresie stężeń 6-60 μmol · dm–3 Cu(II). Wartości współczynnika bioakumulacji w korzeniach była większe niż w pędach w całym zakresie stężeń (0,5-60 μmol · dm–3 Cu). Stosunek Cu zakumulowanej w pędach do całkowitej ilości miedzi zakumulowanej przez rośliny mieścił się w zakresie od 27,6% (0,5 μmol · dm–3) do 8,4% (60 μmol · dm–3).Rapeseed plants were exposed to seven different concentrations (0.5, 1, 3, 6, 12, 24, 60 μmol · dm–3) of CuSO4•5H2O for 7 days. Within concentration range 0.5-3 μmol · dm–3 a significant increase of biomass (both plant organs) was observed. Decrease of biomass was notable after application of concentrations higher than 6 mol · dm–3. Considerable drop in content of chlorophylls as well as carotenoids was observed after application of 6 mol · dm–3 Cu(II). Decline of protein content in leaves of plants was observed in concentration range 6-60 mol · dm–3. Lipid peroxidation expressed as a content of malondialdehyde in leaves was strong within concentration range 6-60 μmol · dm–3 Cu(II). Bioaccumulation factor values of roots were higher then those of shoots in the whole concentration range (0.5-60 μmol · dm–3 Cu). The portion of Cu allocated in shoots related to the total Cu amount accumulated by plant ranged from 27.6% (0.5 μmol · dm–3) to 8.4% (60 μmol · dm–3)

    Fitotoksyczność chromu sześciowartościowego dla roślin rzepaku

    No full text
    Rapeseed (Brassica napus L. subsp. napus) plants were exposed to six different concentrations (12, 24, 60, 120, 240, 480 μmol dm–3) of K2Cr2O7 for 7 days. Dry mass of shoots and roots decreased rapidly with increasing external Cr(VI) concentration. Application of Cr(VI) concentrations ³ 120 μmol dm–3 caused that leaves were strongly chlorotic and some of them even desiccated. Roots of these plants where subtile and brownish. Notable decrease in chlorophyll content was observed already at the lowest (12 μmol dm–3) used concentration. Content of soluble proteins in leaves decreased rapidly within the studied concentration range, whereby the lowest protein content was observed after application of 240 μmol dm–3 Cr(VI). Lipid peroxidation expressed as a content of malondialdehyde in leaves was notable already after application of 12 μmol dm–3 Cr(VI). At lower applied Cr(VI) concentrations (12÷120 μmol dm–3) the bioaccumulation factors related to Cr accumulation in roots were higher then those determined for shoots. Treatment with higher Cr(VI) concentrations (240 and 480 μmol dm–3) had an opposite effect and BAFs for the shoots exceeded those determined for the roots. The portion of Cr allocated in shoots related to the total Cr amount accumulated by plant ranged from 23.3% (12 μmol dm–3) to 94.7% (480 μmol dm–3). In the case of higher applied external Cr(VI) concentrations (120÷480 μmol dm–3) the defence mechanisms of plants were evidently impaired and uncontrolled Cr translocation within the plant occurred

    Koszty i korzyści wykorzystania roślin energetycznych - wyzwania dla przyjaznego zarządzania środowiskiem

    No full text
    Biomass energy has been recognized as one of the most promising and most important renewable energy sources in near future. It was emphasized that besides of woody plant species as energetic plants can be also used both crops (mainly maize, rapeseed, sunflower, soybean, sorghum, sugarcane) and non-food plants (e.g. switchgrass, jatropha, algae). Energetic plant was characterized as a plant grown as a low cost and low maintenance harvest used to make biofuels, or directly exploited for its energy content (heating or electric power production). Moreover, by-products (green waste) of crops and non-food plants can be also used to produce biofuels. It was stressed that European production of biodiesel from energy crops has grown steadily in the last decade, principally focused on rapeseed used for oil as a substance in FAME (fatty acid methyl ester) production. Similar tendency was observed for bioethanol (as a biocomponent in gasoline) prepared mainly from maize or cereals. At present bioethanol and biodiesel primarily produced from the crops (maize and rapeseed) are used in the traffic. However, in the past these crops were used only as a food. Consequently, a new ethical problem appeared: discrepancy between utilization of maize and rapeseed as a food or as an alternative source of energy. New biotechnological approach showed that energetic plants have also significant application for environment friendly management, mainly in phytoremediation technology. Phytoremediation was presented as a cleanup technology belonging to the cost-effective and environment-friendly biotechnology. Thus several types of phytoremediation technologies being used today were briefly outlined.Energia biomasy jest uznana za jedno z najbardziej obiecujących i najważniejszych odnawialnych źródeł energii. Podkreślono, że oprócz gatunków roślin drzewiastych, jako rośliny energetyczne mogą być również wykorzystywane uprawy (głównie kukurydzy, rzepaku, słonecznika, soi, sorgo, trzciny cukrowej) i inne rośliny niespożywcze (np. proso, jatrofa, glony). Uprawa i zbiór roślin energetycznych wymaga niewielkich kosztów, a wykorzystuje się je do produkcji biopaliw lub bezpośredniego uzyskania energii (ogrzewanie lub produkcja energii elektrycznej). Ponadto, produkty uboczne upraw (odpady zielone) i inne rośliny niespożywcze mogą być także wykorzystywane do produkcji biopaliw. Podkreślono, że europejska produkcja biodiesla z roślin energetycznych stale rośnie w ostatnim dziesięcioleciu, koncentrując się głównie na oleju rzepakowym stosowanym w produkcji FAME (estry metylowe kwasów tłuszczowych). Podobne tendencje zaobserwowano w przypadku bioetanolu (jako biokomponentu benzyny), otrzymywanego przede wszystkim z kukurydzy i zbóż. Obecnie bioetanol i biodiesel, wytwarzane głównie z kukurydzy i rzepaku, są stosowane w transporcie. Natomiast w przeszłości rośliny te były używane tylko jako żywność. W konsekwencji pojawiły się nowe problemy etyczne wynikające z rozbieżność między wykorzystaniem kukurydzy i rzepaku jako żywności lub jako alternatywnego źródła energii. Nowe podejście biotechnologiczne pokazuje, że rośliny energetyczne mają również duże znaczenie dla przyjaznego zarządzania środowiskiem, szczególnie w fitoremediacji. Oczyszczanie za pomocą fitoremediacji jest uważane za technologię oszczędną i przyjazną dla środowiska. W skrócie zaprezentowano niektóre z obecnie wykorzystywanychrodzajów fitoremediacji

    Gatunki roślin energetycznych niekonkurujące z rolnictwem konwencjonalnym

    No full text
    The objective of this contribution is to evaluate such energetic plants that will not compete with conventional agriculture. Our analysis is based on definition of energetic plant - a plant grown as a low cost and low maintenance harvest used to make biofuels, or directly exploited for its energy content (heating or electric power production). It was emphasized that besides of woody plant species as energetic plants can be also used both crops and non-food plants. Besides switch grass (Panicum virgatum L), jatropha (Jatropha curcas L) or algae some species from family Euphorbiaceae and Asteraceae store high concentration of triacylglycerols and latex, that can be used for production of biocomponents into the fuels. Species Amaranthus sp., Miscanthus sinensis Anderss., Euphorbia marginata L, Ambrosia artemisifolia L, Helianthus tuberosus L, and Solidago canadensis L successfully grown under climatic conditions of Slovakia, are presented as a potentially used energetic plant species - herbs - that will not compete with the crops. However, it should be stressed that mentioned species are (like jatropha) invasive plants. Since production of biofuels from crops as well as from non-food plants is still actual, carbon dioxide emission and energy balance of biofuel production is presently intensively discussed. Life-cycle analysis (LCA) appeared as a useful tool to appreciate impact of biofuels on the environment. LCA is presented as a scientific method to record environmental impacts from fuel production to final disposal/recycling. This approach is also known as “well to wheel” for transport fuels or “field to wheel” for biofuels. In order to investigate the environmental impacts of bioenergy and biofuels it is necessary to account for several other problems such are acidification, nitrification, land occupation, water use or toxicological effects of fertilizers and pesticides.Celem pracy było wytypowanie takich roślin energetycznych, które nie będą konkurować z rolnictwem konwencjonalnym. Punktem wyjścia przedstawionej analizy jest definicja roślin energetycznych - roślin uprawianych przy niskich kosztach utrzymania i zbioru, stosowanych do produkcji biopaliw lub bezpośrednio wykorzystywanych do produkcji energii (ciepła lub wytwarzania energii elektrycznej). Podkreślono, że oprócz gatunków roślin drzewiastych roślinami energetycznymi mogą być również zboża i rośliny niebędące pożywieniem. Oprócz trawy (Panicum virgatum L) i jatrofy (Jatropha curcas L), niektóre gatunki glonów z rodziny Asteraceae i Euphorbiaceae zawierające duże stężenia triacylogliceroli i lateksu, mogą być wykorzystane do produkcji biokomponentów paliw. Gatunki Amaranthus sp., Anderss Miscanthus sinensis, Euphorbia marginata L, Ambrosia artemisifolia L, Helianthus tuberosus L, Solidago canadensis L mogą być pomyślnie uprawiane w warunkach klimatycznych Słowacji. Rośliny te przedstawiane są jako potencjalnie użyteczne gatunki roślin energetycznych, niekonkurujących z uprawami roślin spożywczych. Należy jednak podkreślić, że wymienione gatunki (np. jatrofa) należą do roślin inwazyjnych. Ponieważ produkcja biopaliw zarówno z roślin uprawnych, jak też z roślin nieżywnościowych jest nadal prowadzona, dlatego emisja ditlenku węgla i bilans energii z biopaliw obecnie są intensywnie dyskutowane. Analiza cyklu życia (LCA) to użytecznenarzędzie określania wpływu biopaliw na środowisko przyrodnicze. LCA jest przedstawiona jako metoda naukowa, pozwalająca na ocenę oddziaływania paliwa na środowisko od produkcji do ostatecznej jego likwidacji/recyklingu. Takie podejście jest również znane jako „szyb naftowy do koła“ dla paliw transportowych lub „pole do koła“ w odniesieniu do biopaliw. W celu zbadania wpływu bioenergii i biopaliw na środowisko należy uwzględnić kilka innych problemów, takich jak zakwaszenie, nitryfikacja, użytkowanie terenu, zużycie wody lub toksycznych nawozów i pestycydów

    Wpływ fitotoksyczności jonów niektórych metali na wybrane odmiany uprawne rzepaku zarejestrowane na Słowacji

    No full text
    The aim of this study was to investigate the phytotoxic effects of seven metal ions (Cd(II), Cr(VI), Cu(II), Hg(II), Ni(II), Pb(II) and Zn(II)) on length of roots of five rapeseed (Brassica napus L. subsp. napus) cultivars registered in Slovakia (Atlantic, Baldur, Californium, Oponent and Verona). The phytotoxic effect of metals was evaluated using IC50 values. The studied metal ions inhibited germination and root growth of rapeseed seedlings. In general, the toxicity of metal ions decreased in the following order Cu > Cr >Hg > Cd > Pb > Ni > Zn. Atlantic, Baldur and Californium were more sensitive to Cd than to Ni, for Oponent and Verona higher toxicity exhibited Ni. From the studied rapeseed cultivars Atlantic and Californium were found to be most sensitive to tested metals. On the other hand, high tolerance to metal treatment was determined for Baldur. Czech cultivar Opponent showed high tolerance to Cd, Cr, Cu and Pb, but it was sensitive to Hg and Ni. The above-mentioned results confirmed differences in the metal tolerance of tested rapeseed cultivars

    Risk Assessment in Coronary Patients Undergoing Abdominal Nonvascular Surgery

    No full text
    The aim of our study was to establish that the incidence of perioperative cardiac complications were in direct correlation with level of operative risk in coronary patients undergoing open abdominal nonvascular surgery with general anesthesia. Our prospective observational clinical study was composed of a group of 111 consecutive patients with angiographically-verified coronary artery disease, who were operated on at the University Clinical Center of Serbia. The patients were classified into four stratification subgroups by "Goldman's Cardiac Risk Index" (CRI) in relation to the incidence of perioperative cardiac complications. Electrocardiography was performed immediately after surgery, on postoperative days 1, 2, 7 and one day before discharge from the hospital. All patients were followed to postoperative day 30. Statistical design was presented by Pearson's chi(2) test and binomial logistic regression. The main result was significant difference between the four stratification subgroups of coronary patients in the incidence of cardiac death up to the 30th postoperative day: I - 0/17 (0.0%) vs. II - 0/40 (0.0%) vs. III - 1/37 (2.7%) vs. IV - 2/17 (11.8%), (p lt 0.05). We concluded that the incidence of perioperative cardiac complications significantly increased with the degree of Goldman's CRI. There was significant difference in the incidence of perioperative cardiac complications between the four Goldman's stratification subgroups
    corecore