729 research outputs found

    Hexagon OPE Resummation and Multi-Regge Kinematics

    Full text link
    We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2→42\to 4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.Comment: 29 pages, 3 figures, 4 ancillary file

    A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon

    Get PDF
    Seven-particle scattering amplitudes in planar super-Yang-Mills theory are believed to belong to a special class of generalised polylogarithm functions called heptagon functions. These are functions with physical branch cuts whose symbols may be written in terms of the 42 cluster A-coordinates on Gr(4,7). Motivated by the success of the hexagon bootstrap programme for constructing six-particle amplitudes we initiate the systematic study of the symbols of heptagon functions. We find that there is exactly one such symbol of weight six which satisfies the MHV last-entry condition and is finite in the 7∄67 \parallel 6 collinear limit. This unique symbol is both dihedral and parity-symmetric, and remarkably its collinear limit is exactly the symbol of the three-loop six-particle MHV amplitude, although none of these properties were assumed a priori. It must therefore be the symbol of the three-loop seven-particle MHV amplitude. The simplicity of its construction suggests that the n-gon bootstrap may be surprisingly powerful for n>6.Comment: 30 pages, 3 ancillary files, v3: minor corrections, including a typo in (33

    A model-based approach towards accelerated process development: A case study on chromatography

    Full text link
    Process development is typically associated with lengthy wet-lab experiments for the identification of good candidate setups and operating conditions. In this paper, we present the key features of a model-based approach for the identification and assessment of process design space (DSp), integrating the analysis of process performance and flexibility. The presented approach comprises three main steps: (1) model development & problem formulation, (2) DSp identification, and (3) DSp analysis. We demonstrate how such an approach can be used for the identification of acceptable operating spaces that enable the assessment of different operating points and quantification of process flexibility. The above steps are demonstrated on Protein A chromatographic purification of antibody-based therapeutics used in biopharmaceutical manufacturing.Comment: Pre-print paper under revie

    A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon

    No full text
    Seven-particle scattering amplitudes in planar super-Yang-Mills theory are believed to belong to a special class of generalised polylogarithm functions called heptagon functions. These are functions with physical branch cuts whose symbols may be written in terms of the 42 cluster A-coordinates on Gr(4, 7). Motivated by the success of the hexagon bootstrap programme for constructing six-particle amplitudes we initiate the systematic study of the symbols of heptagon functions. We find that there is exactly one such symbol of weight six which satisfies the MHV last-entry condition and is finite in the 7 ? 6 collinear limit. This unique symbol is both dihedral and parity-symmetric, and remarkably its collinear limit is exactly the symbol of the three-loop six-particle MHV amplitude, although none of these properties were assumed a priori. It must therefore be the symbol of the threeloop seven-particle MHV amplitude. The simplicity of its construction suggests that the n-gon bootstrap may be surprisingly powerful for n > 6

    A digital platform for the design of patient-centric supply chains

    Get PDF
    Chimeric Antigen Receptor (CAR) T cell therapies have received increasing attention, showing promising results in the treatment of acute lymphoblastic leukaemia and aggressive B cell lymphoma. Unlike typical cancer treatments, autologous CAR T cell therapies are patient-specific; this makes them a unique therapeutic to manufacture and distribute. In this work, we focus on the development of a computer modelling tool to assist the design and assessment of supply chain structures that can reliably and cost-efficiently deliver autologous CAR T cell therapies. We focus on four demand scales (200, 500, 1000 and 2000 patients annually) and we assess the tool’s capabilities with respect to the design of responsive supply chain candidate solutions while minimising cost

    Advanced computational tools to enhance continuous monoclonal antibody production

    Get PDF
    Leading pharmaceutical companies invest high percentage of their revenue in the improvement of existing technologies used for the production of monoclonal antibodies (mAbs). Recently, there has been a paradigm shift towards the development of continuous/quasi-continuous purification operations, aiming to reduce capital and operational costs [1]. At the moment, however, there are no standardized methods and/or tools that can be used for global control and monitoring of integrated processes. Mathematical models and advanced computational tools can be the key for the development of robust, integrated processes, as they can provide valuable insight in the process dynamics and ensure optimal operation [2]. However, such processes are usually characterized by complex mathematical models and periodic operation profiles that result into computationally expensive solutions and challenge the development of global control methods and tools. In this work, we are presenting a novel approach for the development of advanced controllers towards the intensification of mAb production, considering the fed-batch culturing of GS-NS0 cells and the semi-continuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) process [3]. The controller development is realized via the application of a generic framework for the development of advanced control strategies (PAROC) [4] that involves: (i) development of a high-fidelity process model, (ii) approximation of the complex, process model, (iii) design of the multi-parametric controller, (iv) ‘closed-loop’, in-silico validation of the controller against the process model. The development of the control policies is based on multi-parametric Model Predictive Control (mp-MPC) policies that reduce the online, computational force of the controller by deriving the control inputs as a set of explicit functions of the system states and can be implemented on embedded devices [5]. One of the main advantages of the proposed framework is the ability to test the controllers ‘in-silico’, against the high-fidelity process model and evaluate their performance before operating them online. The results from this study indicate that optimal operation, under maximum purity and productivity yield can be ensured with the development of advanced computational tools. The control policies are applied both in the upstream and the downstream processing; yielding therefore a fertile ground towards the development of a global control strategy that can ensure continuous operation

    Operability-economics trade-offs in adsorption-based CO2_2 capture process

    Full text link
    Low-carbon dispatchable power underpins a sustainable energy system, providing load balancing complementing wide-scale deployment of intermittent renewable power. In this new context, fossil fuel-fired power plants must be coupled with a post-combustion carbon capture (PCC) process capable of highly transient operation. To tackle design and operational challenges simultaneously, we have developed a computational framework that integrates process design with techno-economic assessment. The backbone of this is a high-fidelity PCC mathematical model of a pressure-vacuum swing adsorption process. We demonstrate that the cost-optimal design has limited process flexibility, challenging reactiveness to disturbances, such as those in the flue gas feed conditions. The results illustrate that flexibility can be introduced by relaxing the CO2_2 recovery constraint on the operation, albeit at the expense of the capture efficiency of the process. We discover that adsorption-based processes can accommodate for significant flexibility and improved performance with respect to the operational constraints on CO2_2 recovery and purity. The results herein demonstrate a trade-off between process economics and process operability, which must be effectively rationalised to integrate CO2_2 capture units in the design of low-carbon energy systems.Comment: Pre-print paper currently under review. 32 pages, 6 figures. The first two authors contributed equally to this wor

    A coexisting anatomic variation of median and ulnar nerves in a cadaver palm

    Get PDF
    During a routine dissection we observed an anatomical variation of the median nerve and an atypical anastomosis in the palm region of a male cadaver. There were four distinct recurrent motor branches of the left median nerve and the palmar cutaneous branch of the ulnar nerve communicated directly with the third common palmar digital nerve. The presence of such anatomical variant in the hand should keep surgeons alert in the management of hand pathology especially in carpal tunnel syndrome which is a routine operation for many medical centers

    The Steinmann Cluster Bootstrap for N=4 Super Yang-Mills Amplitudes

    Get PDF
    We review the bootstrap method for constructing six- and seven-particle amplitudes in planar N=4\mathcal{N}=4 super Yang-Mills theory, by exploiting their analytic structure. We focus on two recently discovered properties which greatly simplify this construction at symbol and function level, respectively: the extended Steinmann relations, or equivalently cluster adjacency, and the coaction principle. We then demonstrate their power in determining the six-particle amplitude through six and seven loops in the NMHV and MHV sectors respectively, as well as the symbol of the NMHV seven-particle amplitude to four loops.Comment: 36 pages, 4 figures, 5 tables, 1 ancillary file. Contribution to the proceedings of the Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019), 31 August - 25 September 2019, Corfu, Greec
    • 

    corecore