908 research outputs found

    Phase Equilibria of Lattice Polymers from Histogram Reweighting Monte Carlo Simulations

    Full text link
    Histogram-reweighting Monte Carlo simulations were used to obtain polymer / solvent phase diagrams for lattice homopolymers of chain lengths up to r=1000 monomers. The simulation technique was based on performing a series of grand canonical Monte Carlo calculations for a small number of state points and combining the results to obtain the phase behavior of a system over a range of temperatures and densities. Critical parameters were determined from mixed-field finite-size scaling concepts by matching the order parameter distribution near the critical point to the distribution for the three-dimensional Ising universality class. Calculations for the simple cubic lattice (coordination number z=6) and for a high coordination number version of the same lattice (z=26) were performed for chain lengths significantly longer than in previous simulation studies. The critical temperature was found to scale with chain length following the Flory-Huggins functional form. For the z=6 lattice, the extrapolated infinite chain length critical temperature is 3.70+-0.01, in excellent agreement with previous calculations of the temperature at which the osmotic second virial coefficient is zero and the mean end-to-end distance proportional to the number of bonds. This confirms that the three alternative definitions of the Theta-temperature are equivalent in the limit of long chains. The critical volume fraction scales with chain length with an exponent equal to 0.38+-0.01, in agreement with experimental data but in disagreement with polymer solution theories. The width of the coexistence curve prefactor was tentatively found to scale with chain length with an exponent of 0.20+-0.03 for z = 6 and 0.22+-0.03 for z = 26. These values are near the lower range of values obtained from experimental data.Comment: 23 pages, including 7 figure

    An improved Monte Carlo method for direct calculation of the density of states

    Full text link
    We present an efficient Monte Carlo algorithm for determining the density of states which is based on the statistics of transition probabilities between states. By measuring the infinite temperature transition probabilities--that is, the probabilities associated with move proposal only--we are able to extract excellent estimates of the density of states. When this estimator is used in conjunction with a Wang-Landau sampling scheme [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)], we quickly achieve uniform sampling of macrostates (e.g., energies) and systematically refine the calculated density of states. This approach requires only potential energy evaluations, continues to improve the statistical quality of its results as the simulation time is extended, and is applicable to both lattice and continuum systems. We test the algorithm on the Lennard-Jones liquid and demonstrate good statistical convergence properties.Comment: 7 pages, 4 figures. to appear in Journal of Chemical Physic

    Universality class of criticality in the restricted primitive model electrolyte

    Full text link
    The 1:1 equisized hard-sphere electrolyte or restricted primitive model has been simulated via grand-canonical fine-discretization Monte Carlo. Newly devised unbiased finite-size extrapolation methods using temperature-density, (T, rho), loci of inflections, Q = ^2/ maxima, canonical and C_V criticality, yield estimates of (T_c, rho_c) to +- (0.04, 3)%. Extrapolated exponents and Q-ratio are (gamma, nu, Q_c) = [1.24(3), 0.63(3); 0.624(2)] which support Ising (n = 1) behavior with (1.23_9, 0.630_3; 0.623_6), but exclude classical, XY (n = 2), SAW (n = 0), and n = 1 criticality with potentials phi(r)>Phi/r^{4.9} when r \to \infty

    Coexistence and Criticality in Size-Asymmetric Hard-Core Electrolytes

    Get PDF
    Liquid-vapor coexistence curves and critical parameters for hard-core 1:1 electrolyte models with diameter ratios lambda = sigma_{-}/\sigma_{+}=1 to 5.7 have been studied by fine-discretization Monte Carlo methods. Normalizing via the length scale sigma_{+-}=(sigma_{+} + sigma_{-})/2 relevant for the low densities in question, both Tc* (=kB Tc sigma_{+-}/q^2 and rhoc* (= rhoc sigma _{+-}^{3}) decrease rapidly (from ~ 0.05 to 0.03 and 0.08 to 0.04, respectively) as lambda increases. These trends, which unequivocally contradict current theories, are closely mirrored by results for tightly tethered dipolar dimers (with Tc* lower by ~ 0-11% and rhoc* greater by 37-12%).Comment: 4 pages, 5 figure

    Phase diagrams in the lattice RPM model: from order-disorder to gas-liquid phase transition

    Full text link
    The phase behavior of the lattice restricted primitive model (RPM) for ionic systems with additional short-range nearest neighbor (nn) repulsive interactions has been studied by grand canonical Monte Carlo simulations. We obtain a rich phase behavior as the nn strength is varied. In particular, the phase diagram is very similar to the continuum RPM model for high nn strength. Specifically, we have found both gas-liquid phase separation, with associated Ising critical point, and first-order liquid-solid transition. We discuss how the line of continuous order-disorder transitions present for the low nn strength changes into the continuum-space behavior as one increases the nn strength and compare our findings with recent theoretical results by Ciach and Stell [Phys. Rev. Lett. {\bf 91}, 060601 (2003)].Comment: 7 pages, 10 figure

    Crowding of Polymer Coils and Demixing in Nanoparticle-Polymer Mixtures

    Full text link
    The Asakura-Oosawa-Vrij (AOV) model of colloid-polymer mixtures idealizes nonadsorbing polymers as effective spheres that are fixed in size and impenetrable to hard particles. Real polymer coils, however, are intrinsically polydisperse in size (radius of gyration) and may be penetrated by smaller particles. Crowding by nanoparticles can affect the size distribution of polymer coils, thereby modifying effective depletion interactions and thermodynamic stability. To analyse the influence of crowding on polymer conformations and demixing phase behaviour, we adapt the AOV model to mixtures of nanoparticles and ideal, penetrable polymer coils that can vary in size. We perform Gibbs ensemble Monte Carlo simulations, including trial nanoparticle-polymer overlaps and variations in radius of gyration. Results are compared with predictions of free-volume theory. Simulation and theory consistently predict that ideal polymers are compressed by nanoparticles and that compressibility and penetrability stabilise nanoparticle-polymer mixtures.Comment: 18 pages, 4 figure

    Extreme Events in Resonant Radiation from Three-dimensional Light Bullets

    Get PDF
    We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.Comment: 5 pages, 5 figures, submitte

    USING GIS AND EARTHQUAKE SCENARIOS FOR THE ASSESSMENT OF EMERGENCY RESPONSE IN CASE OF A STRONG EARTHQUAKE. AN APPLICATION IN THE URBAN AREA OF THESSALONIKI, GREECE

    Get PDF
    The aim of this paper, which is part of the M.Sc Thesis of the first author, is an initial attempt for the assessment of the emergency response through the road network of the Urban Area of Thessaloniki (UAT) after a strong earthquake. The areas of the road network that are to become inaccessible either due to partial collapse of buildings or due to destruction of the road axes by rupture zones, are detected. The inaccessible parts are determined for the cases of three earthquake scenarios using the values of the Peak Ground Acceleration (PGA), which were calculated for about 6000 points over the UAT, as well as spatial overlay tools of a GIS. In the end, by applying network analysis and according to the situation of the network after the earthquake, the possibility of movement of the fire engines and ambulances was studied and least cost routes from ambulance stations to UAT hospitals were tracked

    XY Spin Fluid in an External Magnetic Field

    Full text link
    A method of integral equations is developed to study inhomogeneous fluids with planar spins in an external field. As a result, the calculations for these systems appear to be no more difficult than those for ordinary homogeneous liquids. The approach proposed is applied to the ferromagnetic XY spin fluid in a magnetic field using a soft mean spherical closure and the Born-Green-Yvon equation. This provides an accurate reproduction of the complicated phase diagram behavior obtained by cumbersome Gibbs ensemble simulation and multiple histogram reweighting techniques.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    • 

    corecore