34 research outputs found

    Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Get PDF
    BACKGROUND: Mutations in the fibrillin -1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. METHODS: We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons RESULTS: Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5(th) LTBP (8-cysteine) domain and the adjacent 25(th) calcium-binding EGF-like (6-cysteine) domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. CONCLUSIONS: Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly

    Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies

    No full text
    The Marfan syndrome (MFS) is a pleiotropic, autosomal dominant disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a series of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS, and at least 337 mainly unique mutations have been published to date. FBN1 mutations have been found not only in MFS but also in a range of connective tissue disorders collectively termed fibrillinopathies ranging from mild phenotypes, such as isolated ectopia lentis, to severe disorders including neonatal MFS, which generally leads to death within the first two years of life. The present article intends to provide an overview of mutations found in MFS and related disorders and to discuss potential genotype-phenotype correlations in MFS

    Towards an optimized design method for pv-powered consumer and professional applications - the syn-energy project

    No full text
    Within the SYN-Energy project the aim is to improve the design of solar-powered products by improving scientific understanding on basic issues that affect the performance of solar power supplies and by assessing environmental and user issues in an early stage of product design. In the paper we show how an informed product selection can be made based on analyses of energy balance, potential environmental benefits, market potential and user preferences. Also it is shown that it is not straightforward that solar-powered devices have positive environmental effect. In general only devices where primary batteries are replaced by solar-charged secondary batteries and which have a good design can give an environmental benefit
    corecore