332 research outputs found

    Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3

    Full text link
    Transition metal oxides display a great variety of quantum electronic behaviours where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial structures where new electronic orders take place. One of the most striking result in this area is the recent observation of a two-dimensional electron gas at the interface between a strongly correlated Mott insulator LaTiO3 and a band insulator SrTiO3. The mechanism responsible for such a behaviour is still under debate. In particular, the influence of the nature of the insulator has to be clarified. Here we show that despite the expected electronic correlations, LaTiO3/SrTiO3 heterostructures undergo a superconducting transition at a critical temperature Tc=300 mK. We have found that the superconducting electron gas is confined over a typical thickness of 12 nm. We discuss the electronic properties of this system and review the possible scenarios

    Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO3_3 interface by electric field

    Full text link
    Electrostatic carrier doping using a field-effect-transistor structure is an intriguing approach to explore electronic phases by critical control of carrier concentration. We demonstrate the reversible control of the insulator-metal transition (IMT) in a two dimensional (2D) electron gas at the interface of insulating SrTiO3_3 single crystals. Superconductivity was observed in a limited number of devices doped far beyond the IMT, which may imply the presence of 2D metal-superconductor transition. This realization of a two-dimensional metallic state on the most widely-used perovskite oxide is the best manifestation of the potential of oxide electronics

    The mediating role of parenting in the associations between household chaos and children’s representations of family dysfunction

    Get PDF
    Children’s drawings are thought to reflect their mental representations of self and their interpersonal relations within families. Household chaos is believed to disrupt key proximal processes related to optimal development. The present study examines the mediating role of parenting behaviors in the relations between two measures of household chaos, instability and disorganization, and how they may be evidenced in children’s representations of family dysfunction as derived from their drawings. The sample (N= 962) is from a longitudinal study of rural poverty exploring the ways in which child, family, and contextual factors shape development over time. Findings reveal that, after controlling for numerous factors including child and primary caregiver covariates, there were significant indirect effects from cumulative family disorganization, but not cumulative family instability, on children’s representation of family dysfunction through parenting behaviors. Results suggest that the proximal effects of daily disorganization outweigh the effects of periodic instability overtime

    Unrequested Findings on Cardiac Computed Tomography: Looking Beyond the Heart

    Get PDF
    Objectives: To determine the prevalence of clinically relevant unrequested extra-cardiac imaging findings on cardiac Computed Tomography (CT) and explanatory factors thereof. Methods: A systematic review of studies drawn from online electronic databases followed by meta-analysis with metaregression was performed. The prevalence of clinically relevant unrequested findings and potentially explanatory variables were extracted (proportion of smokers, mean age of patients, use of full FOV, proportion of men, years since publication). Results: Nineteen radiological studies comprising 12922 patients met the inclusion criteria. The pooled prevalence of clinically relevant unrequested findings was 13 % (95 % confidence interval 9–18, range: 3–39%). The large differences in prevalence observed were not explained by the predefined (potentially explanatory) variables. Conclusions: Clinically relevant extra-cardiac findings are common in patients undergoing routine cardiac CT, and their prevalence differs substantially between studies. These differences may be due to unreported factors such as different definitions of clinical relevance and differences between populations. We present suggestions for basic reporting whic

    Dynein-Dynactin Complex Is Essential for Dendritic Restriction of TM1-Containing Drosophila Dscam

    Get PDF
    BACKGROUND: Many membrane proteins, including Drosophila Dscam, are enriched in dendrites or axons within neurons. However, little is known about how the differential distribution is established and maintained. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the mechanisms underlying the dendritic targeting of Dscam[TM1]. Through forward genetic mosaic screens and by silencing specific genes via targeted RNAi, we found that several genes, encoding various components of the dynein-dynactin complex, are required for restricting Dscam[TM1] to the mushroom body dendrites. In contrast, compromising dynein/dynactin function did not affect dendritic targeting of two other dendritic markers, Nod and Rdl. Tracing newly synthesized Dscam[TM1] further revealed that compromising dynein/dynactin function did not affect the initial dendritic targeting of Dscam[TM1], but disrupted the maintenance of its restriction to dendrites. CONCLUSIONS/SIGNIFICANCE: The results of this study suggest multiple mechanisms of dendritic protein targeting. Notably, dynein-dynactin plays a role in excluding dendritic Dscam, but not Rdl, from axons by retrograde transport
    corecore