1,260 research outputs found
Co-benefits of post-2012 global GHG-mitigation policies
This report provides an analysis of the impact of global greenhouse gas policies on traditional air pollutants using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model in the time horizon up to 2050. The integrated assessment framework of GAINS has been linked through an interface to the POLES global energy system model so that different global energy pathways can be implemented and examined. The impact analysis has been carried out based on projections of energy use data provided by the POLES model for two different climate policy scenarios, i.e., for a current policy Baseline scenario without any global greenhouse gas mitigation efforts, and a 2-degree Centigrade climate Mitigation scenario which assumes internationally coordinated action to mitigate climate change. Outcomes of the analysis are reported globally and for key world regions: EU-27, China, India and the US. The assessment takes into account current air pollution control legislation in each country.
The results of scenario calculations for SO2, NOx and PM2.5 emissions, air pollution control costs, as well as health and environmental impacts, indicate significant scope for co-benefits made possible through climate policies. Climate mitigation measures appear to be more effective in reducing oxides of sulphur and nitrogen, while emissions of particulate matter are reduced to a smaller extent. Decarbonisation of the global energy system by 2050 results in SO2 and NOx emissions lower by two-thirds than in the world without GHG-abatement efforts. Corresponding reduction in the emissions of PM2.5 is estimated at about 30% relative to the Baseline and is particularly sensitive to the assumptions on projected biomass combustion.
Expenditures on air pollution control under the global climate mitigation regime are reduced in 2050 by 250 billion Euros when compared to the Baseline scenario. Under the GAINS cost assumptions the largest potential for cost savings is reported for the transport sector, followed by savings in the power generation sector. Around one third of financial co-benefits estimated world-wide in this study by 2050 are allocated to China, while an annual cost saving of 35 billion Euros is estimated for the EU member countries if the current air pollution legislation and climate policies are adopted in parallel.
This study also quantifies health impacts of air pollution in Europe, China and India in terms of loss of life expectancy related to the exposure from anthropogenic emissions of PM2.5, as well as in terms of premature mortality due to ground-level ozone. For example in China, current ambient concentrations of PM2.5 are responsible for 38 months-losses in the average life expectancy. In 2050, the global GHG-mitigating strategies reduce this indicator in China by 16 months. In addition, decrease of ozone concentrations in the three regions as estimated for the climate Mitigation scenario in 2050 might save nearly 80,000 cases of premature death per year. Similarly significant are reductions of impacts on ecosystems due to acidification and eutrophication
Players of Matching Pennies automatically imitate opponentsâ gestures against strong incentives
There is a large body of evidence of apparently spontaneous mimicry in humans. This phenomenon has been described as "automatic imitation" and attributed to a mirror neuron system, but there is little direct evidence that it is involuntary rather than intentional. Cook et al. supplied the first such evidence in a unique strategic game design that gave all subjects a pecuniary incentive to avoid imitation [Cook R, Bird G, LĂŒnser G, Huck S, Heyes C (2012) Proc Biol Sci 279(1729):780-786]. Subjects played Rock-Paper-Scissors repeatedly in matches between fixed pairs, sometimes with one and sometimes with both subjects blindfolded. The frequency of draws in the blind-blind condition was at chance, but in the blind-sighted condition it was significantly higher, suggesting automatic imitation had occurred. Automatic imitation would raise novel issues concerning how strategic interactions are modeled in game theory and social science; however, inferring automatic imitation requires significant incentives to avoid it, and subjects' incentives were less than 3 US cents per 60-game match. We replaced Cook et al.'s Rock-Paper-Scissors with a Matching Pennies game, which allows far stronger incentives to avoid imitation for some subjects, with equally strong incentives to imitate for others. Our results are important in providing evidence of automatic imitation against significant incentives. That some of our subjects had incentives to imitate also enables us clearly to distinguish intentional responding from automatic imitation, and we find evidence that both occur. Thus, our results strongly confirm the occurrence of automatic imitation, and illuminate the way that automatic and intentional processes interact in a strategic context
The reduction in air quality impacts and associated economic benefits of mitigation policy: Summary of results from the EC RTD ClimateCost Project
The objective of the ClimateCost project is to advance knowledge on the economics of climate change, focusing on three key areas: the economic costs of climate change (the costs of inaction), the costs and benefits of adaptation, and the costs and benefits of long-term targets and mitigation. The project has assessed the impacts and economic costs of climate change in Europe and globally. This included a bottom-up sectoral impact assessment and analysis of adaptation for Europe, as well as a global economic modelling analysis with sector-based impact models, computable general equilibrium models and global economic integrated assessment models.
This technical policy briefing note (TPBN) provides an overview of the air quality benefits work undertaken in the project, which has assessed the avoided impacts and economic ancillary benefits of mitigation policy, focusing on Europe (EU27), though with discussion of the benefits for China and India
An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS
We report on the construction, tests, calibrations and commissioning of an
Optical Readout Time Projection Chamber (O-TPC) detector operating with a
CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure
the cross sections of several key nuclear reactions involved in stellar
evolution. In particular, a study of the rate of formation of oxygen and carbon
during the process of helium burning will be performed by exposing the chamber
gas to intense nearly mono-energetic gamma-ray beams at the High Intensity
Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of
30x30x21 cm^3. Ionization electrons drift towards a double parallel grid
avalanche multiplier, yielding charge multiplication and light emission.
Avalanche induced photons from N2 emission are collected, intensified and
recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional
track images. The event's time projection (third coordinate) and the deposited
energy are recorded by photomultipliers and by the TPC charge-signal,
respectively. A dedicated VME-based data acquisition system and associated data
analysis tools were developed to record and analyze these data. The O-TPC has
been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd
source placed within its volume with a measured energy resolution of 3.0%.
Tracks of alpha and 12C particles from the dissociation of 16O and of three
alpha-particles from the dissociation of 12C have been measured during initial
in-beam test experiments performed at the HIgS facility at Duke University. The
full detection system and its performance are described and the results of the
preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program,
ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
Diffusion Time-Scale Invariance, Markovization Processes and Memory Effects in Lennard-Jones Liquids
We report the results of calculation of diffusion coefficients for
Lennard-Jones liquids, based on the idea of time-scale invariance of relaxation
processes in liquids. The results were compared with the molecular dynamics
data for Lennard-Jones system and a good agreement of our theory with these
data over a wide range of densities and temperatures was obtained. By
calculations of the non-Markovity parameter we have estimated numerically
statistical memory effects of diffusion in detail.Comment: 10 pages, 3 figure
Varieties of labour administration in Europe and the consequences of the Great Recession
This article focuses on national public administration activities that relate to employment, social protection and industrial relations. The International Labour Organization (ILO) refers to these activities collectively as âlabour administrationâ and regards the bodies that conduct them within individual countries as together forming national systems of labour administration. This article explores the concept of ânational system of labour administrationâ and considers the potential contribution of comparative institutional analysis in understanding how national systems are organised and change over time. The article also compares the organisation of national labour administration systems in European Union (EU) countries and analyses how these systems have developed since the start of the economic crisis that erupted in 2008
Control-volume representation of molecular dynamics
A Molecular Dynamics (MD) parallel to the Control Volume (CV) formulation of
fluid mechanics is developed by integrating the formulas of Irving and
Kirkwood, J. Chem. Phys. 18, 817 (1950) over a finite cubic volume of molecular
dimensions. The Lagrangian molecular system is expressed in terms of an
Eulerian CV, which yields an equivalent to Reynolds' Transport Theorem for the
discrete system. This approach casts the dynamics of the molecular system into
a form that can be readily compared to the continuum equations. The MD
equations of motion are reinterpreted in terms of a
Lagrangian-to-Control-Volume (\CV) conversion function , for
each molecule . The \CV function and its spatial derivatives are used to
express fluxes and relevant forces across the control surfaces. The
relationship between the local pressures computed using the Volume Average (VA,
Lutsko, J. Appl. Phys 64, 1152 (1988)) techniques and the Method of Planes
(MOP, Todd et al, Phys. Rev. E 52, 1627 (1995)) emerges naturally from the
treatment. Numerical experiments using the MD CV method are reported for
equilibrium and non-equilibrium (start-up Couette flow) model liquids, which
demonstrate the advantages of the formulation. The CV formulation of the MD is
shown to be exactly conservative, and is therefore ideally suited to obtain
macroscopic properties from a discrete system.Comment: 19 pages, 15 figure
Emissions of air pollutants for the World Energy Outlook 2012 energy scenarios
This report examines global emissions of major air pollutants (SO2, NOx, PM2.5) resulting from energy scenarios developed for the World Energy Outlook 2012 (OECD/IEA, 2012). Estimates include emissions for 25 regions according to the aggregation used in the IEA World Energy Model (WEM). Emissions have been estimated using the IIASA GAINS model.
The 2012 Outlook discusses four energy pathways for the next 25 years. The central scenario, the New Policies (NP) scenario, takes into account recently announced policy commitments and assumes that they are implemented in a cautious manner. The Current Policies (CP) scenario assumes no new policies beyond those adopted by mid-2012. The High Energy Efficiency (HE) scenario simulates the effects of policies aimed at promoting energy efficiency in all countries in the world. The 450 scenario assumes radical policy action consistent with limiting the global temperature increase to two degrees Celsius (2 oC).
All the four pathways were implemented into the GAINS model. Next, emissions of air pollutants were calculated. Calculations take into account the current air pollution control legislation and policies in each country or region as adopted or in the pipeline by mid-2012. Presented in this report estimates do not include emissions from international shipping as well as cruising emissions from aviation. They also do not include emissions from biomass burning (deforestation, savannah burning, and vegetation fires).
In 2010, world emissions of SO2 from sources covered in this report were about 86 million tons. OECD countries contributed 21 percent of this total. Implementation of pollution controls for the Current Policies Scenario causes an eight percent decrease in world emissions of SO2 in 2020 compared with 2010. This is a combined result of reducing emissions from OECD countries (by about 24 percent), increase in India, and a decrease in China, Russia, South Africa, and Middle East. After 2020, emissions from many non-OECD countries continue rising, which causes an increase of world emissions by about five million tons until 2035. Particularly remarkable is the increase in SO2 emissions in India. The corresponding numbers for NOx are: 85 million tons in 2010 (of which 35 percent originated from the OECD countries), five percent decrease until 2020 and next increase until 2035 by 12 million tons. Emissions of PM2.5 (43 million tons in 2010) are dominated by sources from non-OECD countries -- 90 percent of total. Changes in the emissions until 2035 are rather small, with a seven percent decrease in the OECD countries and a stabilization in the developing world.
The 450 Scenario causes an important reduction in emissions of air pollutants. In 2035, the emissions of SO2 are 36 percent lower than in the Current Policies case. Emissions of NOx decrease by 32 percent and those of PM2.5 by 11 percent. Emissions for the New Policies and the High Energy Efficiency scenarios lie between those for the Current Policies and the 450 scenarios.
Costs of controlling emissions of sulphur and nitrogen oxides and PM (dust) in 2010 are estimated at about 217 billion Euros/a. Until 2035, these costs increase in the Current Policies Scenario by more than a factor of two, which is due to higher activity levels and increasing stringency of controls. In 2035, 61 percent of the total costs are the expenditures on reducing emissions from road transport. The 450 Scenario brings 32 percent cost savings in 2035 compared to the Current Policies case.
This study also estimates health impacts of air pollution in Europe, China and India in terms of life years lost (YOLL) attributable to the exposure from anthropogenic emissions of PM2.5. PM concentrations as in 2010 cause a loss of about 2.2 billion life-years. This estimate is dominated by impacts in China and India. The Current Policies Scenario implies an increase of the YOLL indicator in 2035 by 46 percent to 3.3 billion. Decrease of PM2.5 concentrations as in the 450 Scenario in 2035 saves about 870 million life-years.
Lower impact indicators and lower control costs in the scenarios that simulate effects of policies towards reducing energy demand and the use of fossil fuels clearly demonstrate important co-benefits of such policies for air pollution
Thin Film Rupture from the Atomic Scale
The retraction of thin films, as described by the Taylor-Culick (TC) theory,
is subject to widespread debate, particularly for films at the nanoscale. We
use non-equilibrium molecular dynamics simulations to explore the validity of
the assumptions used in continuum models, by tracking the evolution of holes in
a film. By deriving a new mathematical form for the surface shape and
considering a locally varying surface tension at the front of the retracting
film, we reconcile the original theory with our simulation data to recover a
corrected TC speed valid at the nanoscale
- âŠ