686 research outputs found
The Heisenberg antiferromagnet on a triangular lattice: topological excitations
We study the topological defects in the classical Heisenberg antiferromagnet
in two dimensions on a triangular lattice (HAFT). While the topological
analysis of the order parameter space indicates that the defects are of
type, consideration of the energy leads us to a description of the low--energy
stationary points of the action in terms of vortices, as in the planar XY
model. Starting with the continuum description of the HAFT, we show
analytically that its partition function can be reduced to that of a
2--dimensional Coulomb gas with logarithmic interaction. Thus, at low
temperatures, the correlation length is determined by the spinwaves, while at
higher temperatures we expect a crossover to a Kosterlitz--Thouless type
behaviour. The results of recent Monte Carlo calculations of the correlation
length are consistent with such a crossover.Comment: 9 pages, revtex, preprint: ITP-UH 03/9
Exogenous application of platelet-leukocyte gel during open subacromial decompression contributes to improved patient outcome
Background: Platelet-leukocyte gel (PLG) is being used during various surgical procedures in an attempt to enhance the healing process. We studied the effects of PLG on postoperative recovery of patients undergoing open subacromial decompression (OSD). Methods: PLG was produced from platelet-leukocyte-rich plasma (P-LRP), prepared from a unit of whole blood. Forty patients were included in the study. Self-assessed evaluations, using the American Shoulder and Elbow Surgeons scoring system of activities of daily living (ADL), joint instability, pain levels, pain medications, and clinical evaluations for range of motion were conducted. Results: Platelet and leukocyte counts were significantly increased in the P-LRP compared to baseline counts. Treated patients demonstrated decreased visual analog scales for pain and used significantly less pain medication, had an improved range of motion during passive forward elevation, external rotation, external rotation with arm at 90 degrees abduction, internal rotation, and cross body adduction compared to control patients (p < 0.001). No differences in the instability score were observed between the groups. Furthermore, treated patients performed more ADL (p < 0.05). Conclusion: In the PLG-treated group, recovery was faster and patients returned earlier to daily activities and also took less pain medication than control subjects
Heat transfer characteristics of developing flow in the transitional flow regime of a solar receiver tube
Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.The transitional flow regime has been mostly avoided by designers due to uncertainty and perceived chaotic behaviour. However, changes in operating conditions, design constraints or additional equipment can cause that the flow to move into the transitional flow regime. Previous work done in the transitional flow regime focused on fully developed flow or average measurements of developing and fully developed flow across a tube length and developing flow in the transitional flow regime have not been investigated yet. Therefore, the purpose of this study is to investigate the heat transfer characteristics of developing flow in the transitional flow regime of a solar receiver tube and is work in progress. An experimental set-up was designed, built and validated and heat transfer measurements were taken at a heat flux of 6.5 kW/m2 between Reynolds numbers of 500 and 10 000. It was found that the width of the transition region decreased along the tube length and the heat transfer coefficients decreased as the flow approached fully developed flow.dc201
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
Tissue identification with micro-magnetic resonance imaging in a caprine spinal fusion model
Nonunion is a major complication of spinal
interbody fusion. Currently X-ray and computed tomography
(CT) are used for evaluating the spinal fusion process.
However, both imaging modalities have limitations in
judgment of the early stages of this fusion process, as they
only visualize mineralized bone. Magnetic resonance
imaging (MRI) could be of great value as it is able to discriminate
between different types of tissue. A feasibility
study was performed in nine animals from a goat spinal
fusion study, to evaluate the detection capacity of different
tissues with micro-MRI. In this study bioresorbable polylactic
acid cages were used. Six- and 12-months follow-up
specimens were scanned in a 6.3 T micro-MRI scanner.
After scanning, the specimens were processed for histology.
Different types of tissue as well as the degradable cage
material were identified in the fusion zone and designated as
regions of interest (ROIs). Subsequently, the location of
these ROIs was determined on the corresponding micro-
MRI image, and average signal intensities of every individual
ROI were measured. An excellent match was seen
between the histological sections and micro-MRI images.
The micro-MRI images showed quantifiable differences in
signal intensity between bone with adipose marrow, bone
with hematopoietic marrow, fibrocartilage, fibrous tissue,
and degradable implant material. In time the signal intensity
of bone with adipose marrow, bone with hematopoietic red
marrow, and of fibrous tissue remained relatively constant.
On the other hand, the signal intensity of the degradable
implant material and the fibrocartilage changed significantly
in time, indicating change of structure and
composition. In conclusion, in our model using bioresorbable
cages the MRI provides us with detailed information
about the early fusion process and may therefore, allow
early diagnosis of non-union
No positive effect of autologous platelet gel after total knee arthroplasty: A double-blind randomized controlled trial: 102 patients with a 3-month follow-up
Background and purpose Activated platelets release a cocktail of growth factors, some of which are thought to stimulate repair. We investigated whether the use of autologous platelet gel (PG) in total knee arthroplasty (TKA) would improve wound healing and knee function, and reduce blood loss and the use of analgesics. Patients and methods 102 patients undergoing TKA were randomly assigned to a PG group (n 50) or to a control (C) group (n 52). The primary analysis was based on 73 participants (PG: 32; C: 41) with comparison of postoperative wound scores, VAS, WOMAC, knee function, use of analgesics, and the pre- and postoperative hemoglobin values after a follow-up of 3 months. 29 participants were excluded due to insufficient data. Results The characteristics of the protocol-compliant patients were similar to those of the patients who w
Cognitive improvement in patients with carotid stenosis is independent of treatment type
Treatment of carotid artery stenosis decreases the long-term risk of stroke and may enhance cerebral blood flow. It is therefore expected to have the potential to prevent cognitive decline or even improve cognition over the long-term. However, intervention itself can cause peri-interventional cerebral infarcts, possibly resulting in a decline of cognitive performance, at least for a short time. We investigated the long-term effects of three treatment methods on cognition and the emotional state one year after intervention. In this prospective observational cohort study, 58 patients with extracranial carotid artery stenosis (≥ 70%) underwent magnetic resonance imaging and assessment of cognition, mood and motor speed before carotid endarterectomy (n = 20), carotid stenting (n = 10) or best medical treatment (n = 28) (i.e., time-point 1 [TP1]), and at one-year follow-up (TP2). Gain scores, reflecting cognitive change after treatment, were built according to performance as (TP2 -TP1)/TP1. Independent of the treatment type, significant improvement in frontal lobe functions, visual memory and motor speed was found. Performance level, motor speed and mood at TP1 were negatively correlated with gain scores, with greater improvement in patients with low performance before treatment. Active therapy, whether conservative or interventional, produces significant improvement of frontal lobe functions and memory in patients with carotid artery disease, independent of treatment type. This effect was particularly pronounced in patients with low cognitive performance prior to treatment
Cognitive and emotional effects of carotid stenosis.
PRINCIPLES: Patients with carotid artery stenosis (CAS) are at risk of ipsilateral stroke and chronic compromise of cerebral blood flow. It is under debate whether the hypo-perfusion or embolism in CAS is directly related to cognitive impairment. Alternatively, CAS may be a marker for underlying risk factors, which themselves influence cognition. We aimed to determine cognitive performance level and the emotional state of patients with CAS. We hypo-thesised that patients with high grade stenosis, bilateral stenosis, symptomatic patients and/or those with relevant risk factors would suffer impairment of their cognitive performance and emotional state.
METHODS: A total of 68 patients with CAS of ≥70% were included in a prospective exploratory study design. All patients underwent structured assessment of executive functions, language, verbal and visual memory, motor speed, anxiety and depression.
RESULTS: Significantly more patients with CAS showed cognitive impairments (executive functions, word production, verbal and visual memory, motor speed) and anxiety than expected in a normative sample. Bilateral and symptomatic stenosis was associated with slower processing speed. Cognitive performance and anxiety level were not influenced by the side and the degree of stenosis or the presence of collaterals. Factors associated with less co-gnitive impairment included higher education level, female gender, ambidexterity and treated hypercholesterolemia.
CONCLUSIONS: Cognitive impairment and increased level of anxiety are frequent in patients with carotid stenosis. The lack of a correlation between cognitive functioning and degree of stenosis or the presence of collaterals, challenges the view that CAS per se leads to cognitive impairment
Quantum gases in trimerized kagom\'e lattices
We study low temperature properties of atomic gases in trimerized optical
kagom\'{e} lattices. The laser arrangements that can be used to create these
lattices are briefly described. We also present explicit results for the
coupling constants of the generalized Hubbard models that can be realized in
such lattices. In the case of a single component Bose gas the existence of a
Mott insulator phase with fractional numbers of particles per trimer is
verified in a mean field approach. The main emphasis of the paper is on an
atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with
two fermions per site. This system is shown to be described by a quantum spin
1/2 model on the triangular lattice with couplings that depend on the bond
directions. We investigate this model by means of exact diagonalization. Our
key finding is that the system exhibits non-standard properties of a quantum
spin-liquid crystal: it combines planar antiferromagnetic order in the ground
state with an exceptionally large number of low energy excitations. The
possibilities of experimental verification of our theoretical results are
critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous
minor corrections with respect to former lanl submissio
- …