53,989 research outputs found

    Implications of the isotope effects on the magnetization, magnetic torque and susceptibility

    Full text link
    We analyze the magnetization, magnetic torque and susceptibility data of La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal 3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that on the anisotropy. Invoking the generic behavior of the anisotropy the doping dependence of the isotope effects on the critical properties, including Tc, correlation lengths and magnetic penetration depths are traced back to a change of the mobile carrier concentration.Comment: 5 pages, 3 figure

    Angular Radii of Stars via Microlensing

    Full text link
    We outline a method by which the angular radii of giant and main sequence stars in the Galactic bulge can be measured to a few percent accuracy. The method combines ground-based photometry of caustic-crossing bulge microlensing events, with a handful of precise astrometric measurements of the lensed star during the event, to measure the angular radius of the source, theta_*. Dense photometric coverage of one caustic crossing yields the crossing timescale dt. Less frequent coverage of the entire event yields the Einstein timescale t_E and the angle phi of source trajectory with respect to the caustic. The photometric light curve solution predicts the motion of the source centroid up to an orientation on the sky and overall scale. A few precise astrometric measurements therefore yield theta_E, the angular Einstein ring radius. Then the angular radius of the source is obtained by theta_*=theta_E(dt/t_E) sin(phi). We argue that theta_* should be measurable to a few percent accuracy for Galactic bulge giant stars using ground-based photometry from a network of small (1m-class) telescopes, combined with astrometric observations with a precision of ~10 microarcsec to measure theta_E. We find that a factor of ~50 times fewer photons are required to measure theta_E to a given precision for binary-lens events than single-lens events. Adopting parameters appropriate to the Space Interferometry Mission (SIM), ~7 min of SIM time is required to measure theta_E to ~5% accuracy for giant sources in the bulge. For main-sequence sources, theta_E can be measured to ~15% accuracy in ~1.4 hours. With 10 hrs of SIM time, it should be possible to measure theta_* to ~5% for \~80 giant stars, or to 15% for ~7 main sequence stars. A byproduct of such a campaign is a significant sample of precise binary-lens mass measurements.Comment: 13 pages, 3 figures. Revised version, minor changes, required SIM integration times revised upward by ~60%. Accepted to ApJ, to appear in the March 20, 2003 issue (v586

    Exact gravitational lensing and rotation curve

    Full text link
    Based on the geodesic equation in a static spherically symmetric metric we discuss the rotation curve and gravitational lensing. The rotation curve determines one function in the metric without assuming Einstein's equations. Then lensing is considered in the weak field approximation of general relativity. From the null geodesics we derive the lensing equation and corrections to it.Comment: 12 pages, 1 figur

    Local pressure-induced metallization of a semiconducting carbon nanotube in a crossed junction

    Full text link
    The electronic and vibrational density of states of a semiconducting carbon nanotube in a crossed junction was investigated by elastic and inelastic scanning tunneling spectroscopy. The strong radial compression of the nanotube at the junction induces local metallization spatially confined to a few nm. The local electronic modifications are correlated with the observed changes in the radial breathing and G-band phonon modes, which react very sensitively to local mechanical deformation. In addition, the experiments reveal the crucial contribution of the image charges to the contact potential at nanotube-metal interfaces

    Geometry of Universal Magnification Invariants

    Full text link
    Recent work in gravitational lensing and catastrophe theory has shown that the sum of the signed magnifications of images near folds, cusps and also higher catastrophes is zero. Here, it is discussed how Lefschetz fixed point theory can be used to interpret this result geometrically. It is shown for the generic case as well as for elliptic and hyperbolic umbilics in gravitational lensing.Comment: RevTEX4, 13 pages, submitted to J. Math. Phy

    Statistics of Weak Gravitational Lensing in Cold Dark Matter Models; Magnification Bias on Quasar Luminosity Functions

    Get PDF
    We compute statistical properties of weak gravitational lensing by large-scale structure in three Cold Dark Matter models. We use a P3^3M NN-body code to simulate the formation and evolution of large-scale structure in the universe. We perform 1.1×1071.1\times10^7 ray-tracing experiments for each model using the multiple lens-plane algorithm. From the results of these experiments, we calculate the probability distribution functions (PDF) of the convergences, shears, and magnifications, and their root-mean-square (rms) values. We find that the rms values of the convergence and shear agree with the predictions of a nonlinear analytical model. We also find that the PDFs of the magnifications μ\mu have a peak at values slightly smaller than μ=1\mu=1, and are strongly skewed toward large magnifications. In particular, for the high-density model, a power-law tail appears in the magnification distribution at large magnifications for sources at redshifts zs>2z_s>2. The rms values of the magnifications essentially agree with the nonlinear analytical predictions for sources at low redshift, but exceed these predictions for high redshift sources, once the power-law tail appears. We study the effect of magnification bias on the luminosity functions of high-redshift quasars, using the calculated PDFs of the magnifications. We show that the magnification bias is moderate in the absence of the power-law tail in the magnification distribution, but depends strongly on the value of the density parameter. In presence of the power-law tail, the bias becomes considerable, especially at the bright end of the luminosity functions.Comment: 24 pages, 9 figures, LaTex using epsfig.sty. Submitted to the The Astrophysical Journa

    The Born and Lens-Lens Corrections to Weak Gravitational Lensing Angular Power Spectra

    Full text link
    We revisit the estimation of higher order corrections to the angular power spectra of weak gravitational lensing. Extending a previous calculation of Cooray and Hu, we find two additional terms to the fourth order in potential perturbations of large-scale structure corresponding to corrections associated with the Born approximation and the neglect of line-of-sight coupling of two foreground lenses in the standard first order result. These terms alter the convergence (κκ\kappa\kappa), the lensing shear E-mode (ϵϵ\epsilon\epsilon), and their cross-correlation (κϵ\kappa\epsilon) power spectra on large angular scales, but leave the power spectra of the lensing shear B-mode (ββ\beta\beta) and rotational (ωω\omega\omega) component unchanged as compared to previous estimates. The new terms complete the calculation of corrections to weak lensing angular power spectra associated with both the Born approximation and the lens-lens coupling to an order in which the contributions are most significant. Taking these features together, we find that these corrections are unimportant for any weak lensing survey, including for a full sky survey limited by cosmic variance.Comment: Added references, minor changes to text. 9 pages, 2 figure
    • …
    corecore