342 research outputs found

    Temporal profile of endogenous anatomical repair and functional recovery following spinal cord injury in adult zebrafish

    Get PDF
    Regenerated cerebrospinal axons are considered to be involved in the spontaneous recovery of swimming ability following a spinal cord injury in adult zebrafish. We employed behavioral analysis, neuronal tracing, and immunocytochemistry to determine the exact temporal relationship between swimming ability and regenerated cerebrospinal axon number in adult zebrafish with a complete spinal cord transection. Between two and eight weeks post-lesion, swimming gradually improved to 44% of sham-injured zebrafish. Neurons within the reticular formation, magnocellular octaval nucleus, and nucleus of the medial longitudinal fascicle grew their axon across and at least four millimeters beyond the lesion. The largest increases in swimming ability and number of regenerated cerebrospinal axons were observed between two and four weeks post-lesion. Regression analyses revealed a significant correlation between swimming ability and the number of regenerated axons. Our results indicate the involvement of cerebrospinal axons in swimming recovery after spinal cord injury in adult zebrafish. © 2014 Vajn et al

    Excluding venous thromboembolism using point of care D-dimer tests in outpatients: a diagnostic meta-analysis

    Get PDF
    Objective To review the evidence on the diagnostic accuracy of the currently available point of care D-dimer tests for excluding venous thromboembolism

    An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY

    Get PDF
    In Escherichia coli, a signal recognition particle (SRP) has been identified which binds specifically to the signal sequence of presecretory proteins and which appears to be essential for efficient translocation of a subset of proteins. In this study we have investigated the function of E. coli FtsY which shares sequence similarity with the alpha-subunit of the eukaryotic SRP receptor ('docking protein') in the membrane of the endoplasmic reticulum. A strain was constructed which allows the conditional expression of FtsY. Depletion of FtsY is shown to cause the accumulation of the precursor form of beta-lactamase, OmpF and ribose binding protein in vivo, whereas the processing of various other presecretory proteins is unaffected. Furthermore, FtsY-depleted inverted cytoplasmic membrane vesicles are shown to be defective in the translocation of pre-beta-lactamase using an in vitro import assay. Subcellular localization studies revealed that FtsY is located in part at the cytoplasmic membrane with which it seems peripherally associated. These observations suggest that FtsY is the functional E. coli homolog of the mammalian SRP receptor

    Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome

    Get PDF
    As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain

    Validation of two age dependent D-dimer cut-off values for exclusion of deep vein thrombosis in suspected elderly patients in primary care: retrospective, cross sectional, diagnostic analysis

    Get PDF
    Objective To determine whether the use of age adapted D-dimer cut-off values can be translated to primary care patients who are suspected of deep vein thrombosis

    The effects of the combination of mesenchymal stromal cells and nanofiber-hydrogel composite on repair of the contused spinal cord

    Get PDF
    A bone marrow-derived mesenchymal stromal cell (MSC) transplant and a bioengineered nanofiber-hydrogel composite (NHC) have been shown to stimulate nervous tissue repair in the contused spinal cord in rodent models. Here, these two modalities were combined to assess their repair effects in the contused spinal cord in adult rats. Cohorts of contused rats were treated with MSC in NHC (MSC-NHC), MSC in phosphate-buffered saline (MSC-PBS), NHC, or PBS injected into the contusion site at 3 days post-injury. One week after injury, there were significantly fewer CD68+ cells in the contusion with MSC-NHC and NHC, but not MSC-PBS. The reduction in CD86+ cells in the injury site with MSC-NHC was mainly attributed to NHC. One and eight weeks after injury, we found a greater CD206+/CD86+ cell ratio with MSC-NHC or NHC, but not MSC-PBS, indicating a shift from a pro-inflammatory towards an anti-inflammatory milieu in the injury site. Eight weeks after injury, the injury size was significantly reduced with MSC-NHC, NHC, and MSC-PBS. At this time, astrocyte, and axon presence in the injury site was greater with MSC-NHC compared with MSC-PBS. We did not find a significant effect of NHC on MSC transplant survival, and hind limb function was similar across all groups. However, we did find fewer macrophages at 1 week post-injury, more macrophages polarized towards a pro-regenerative phenotype at 1 and 8 weeks after injury, and reduced injury volume, more astrocytes, and more axons at 8 weeks after injury in rats with MSC-NHC and NHC alone compared with MSC-PBS; these findings were especially significant between rats with MSC-NHC and MSC-PBS. The data support further study in the use of an NHC-MSC combination transplant in the contused spinal cord

    Are Apathy and Depressive Symptoms Related to Vascular White Matter Hyperintensities in Severe Late Life Depression?

    Get PDF
    OBJECTIVE: Apathy symptoms are defined as a lack of interest and motivation. Patients with late-life depression (LLD) also suffer from lack of interest and motivation and previous studies have linked apathy to vascular white matter hyperintensities (WMH) of the brain in depressed and nondepressed patients. The aim of this study was to investigate the relationship between apathy symptoms, depressive symptoms, and WMH in LLD. We hypothesize that late-onset depression (LOD; first episode of depression after 55 years of age) is associated with WMH and apathy symptoms. METHODS: Apathy scores were collected for 87 inpatients diagnosed with LLD. Eighty patients underwent brain magnetic resonance imaging. Associations between depressive and apathy symptoms and WMH were analyzed using linear regression. RESULTS: All 3 subdomains of the 10-item Montgomery–Åsberg Depression Rating Scale correlated significantly with the apathy scale score (all P < .05). In the total sample, apathy nor depressive symptoms were related to specific WMH. In LOD only, periventricular WMH were associated with depression severity (β = 5.21, P = .04), while WMH in the left infratentorial region were associated with apathy symptoms (β coefficient = 5.89, P = .03). CONCLUSION: Apathy and depressive symptoms are highly overlapping in the current cohort of older patients with severe LLD, leading to the hypothesis that apathy symptoms are part of depressive symptoms in the symptom profile of older patients with severe LLD. Neither apathy nor depressive symptoms were related to WMH, suggesting that radiological markers of cerebrovascular disease, such as WMH, may not be useful in predicting these symptoms in severe LLD

    Integrated management of atrial fibrillation in primary care:results of the ALL-IN cluster randomized trial

    Get PDF
    Aims To evaluate whether integrated care for atrial. fibrillation (AF) can be safely orchestrated in primary care. Methods and results The ALL-IN trial was a cluster randomized, open-label, pragmatic non-inferiority trial performed in primary care practices in the Netherlands. We randomized 26 practices: 15 to the integrated care intervention and 11 to usual care. The integrated care intervention consisted of (i) quarterly AF check-ups by trained nurses in primary care, also focusing on possibly interfering comorbidities, (ii) monitoring of anticoagulation therapy in primary care, and finally (iii) easy-access availability of consultations from cardiologists and anticoagulation clinics. The primary endpoint was all-cause mortality during 2 years of follow-up. In the intervention arm, 527 out of 941 eligible AF patients aged >65 years provided informed consent to undergo the intervention. These 527 patients were compared with 713 AF patients in the control arm receiving usual care. Median age was 77 (interquartile range 72-83) years. The all-cause mortality rate was 3.5 per 100 patient-years in the intervention arm vs. 6.7 per 100 patient-years in the control arm [adjusted hazard ratio (HR) 0.55; 95% confidence interval (CI) 0.37-0.82]. For non cardiovascular mortality, the adjusted HR was 0.47 (95% CI 0.27-0.82). For other adverse events, no statistically significant differences were observed. Conclusion In this cluster randomized trial, integrated care for elderly AF patients in primary care showed a 45% reduction in all-cause mortality when compared with usual care

    Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.

    Get PDF
    Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI
    • …
    corecore