7 research outputs found

    An attempt to apply laser combustion to palm waste

    No full text
    The focus of this study was to develop a method to demonstrate the feasibility of obtaining useful and high-value resources from Phoenix dactylifera residues and, to determine the physical and chemical properties of the ash of dates-palm-tree remains. Date-palm leaves and fiber samples were combusted for 50 s, using an Nd: YAG laser with 40 W output power. It was found, that combustion of one gram of agricultural waste could be completed in 50 s and 40 W by laser while 10 g required 1.5–10 min and 300–800 W power by microwave and at least 2 h with 1500 W power for conventional heating for 10 g. The subjects of this treatment, the leaves and fiber samples, before and after combustion were investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR). The XRD results of the palm-fiber after combustion reveal that the samples were crystallized with a rhombohedral phase of acetamide and hatrurite, orthorhombic finite, and Ca4Si2O6(CO3)(OH)2, and a monoclinic phase of ikaite properties. The XRD patterns of palm-leaf after combustion reveal that the samples were crystallized with orthorhombic hillebrandite, rhombohedral acetamide, and the monoclinic phase of each karpatite, morganite, and howlite. Finally, the FTIR exhibited several absorbance peaks, assigned to silica

    High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications

    No full text
    corecore