4,148 research outputs found
Derived categories of Burniat surfaces and exceptional collections
We construct an exceptional collection of maximal possible length
6 on any of the Burniat surfaces with , a 4-dimensional family of
surfaces of general type with . We also calculate the DG algebra of
endomorphisms of this collection and show that the subcategory generated by
this collection is the same for all Burniat surfaces.
The semiorthogonal complement of is an "almost
phantom" category: it has trivial Hochschild homology, and K_0(\mathcal
A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande
Ringlike inelastic events in cosmic rays and accelerators
In cosmic rays and in accelerators there were observed single inelastic processes with densely produced (azimuthally isotropic) groups of particles exhibiting spikes in the pseudorapidity plot of an individual event (i.e. ringlike events). Theoretically the existence of such processes was predicted as a consequence of Cerenkov gluon radiation or, more generally, of deconfinement radiation. Nowadays some tens of such events have been accumulated at 400 GeV and at 150 TeV. Analyzing ringlike events in proton-nucleon interactions at 400 GeV/c it is shown that they exhibit striking irregularity in the positions of pseudorapidity spikes' centers which tend to lie mostly at 55,90 and 125 deg in cms. It implies rather small deconfinement lengths of the order of some fermi
Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions
A new representation of the 2N fold integrals appearing in various two-matrix
models that admit reductions to integrals over their eigenvalues is given in
terms of vacuum state expectation values of operator products formed from
two-component free fermions. This is used to derive the perturbation series for
these integrals under deformations induced by exponential weight factors in the
measure, expressed as double and quadruple Schur function expansions,
generalizing results obtained earlier for certain two-matrix models. Links with
the coupled two-component KP hierarchy and the two-component Toda lattice
hierarchy are also derived.Comment: Submitted to: "Random Matrices, Random Processes and Integrable
Systems", Special Issue of J. Phys. A, based on the Centre de recherches
mathematiques short program, Montreal, June 20-July 8, 200
Geometric collections and Castelnuovo-Mumford Regularity
The paper begins by overviewing the basic facts on geometric exceptional
collections. Then, we derive, for any coherent sheaf \cF on a smooth
projective variety with a geometric collection, two spectral sequences: the
first one abuts to \cF and the second one to its cohomology. The main goal of
the paper is to generalize Castelnuovo-Mumford regularity for coherent sheaves
on projective spaces to coherent sheaves on smooth projective varieties
with a geometric collection . We define the notion of regularity of a
coherent sheaf \cF on with respect to . We show that the basic
formal properties of the Castelnuovo-Mumford regularity of coherent sheaves
over projective spaces continue to hold in this new setting and we show that in
case of coherent sheaves on \PP^n and for a suitable geometric collection of
coherent sheaves on \PP^n both notions of regularity coincide. Finally, we
carefully study the regularity of coherent sheaves on a smooth quadric
hypersurface Q_n \subset \PP^{n+1} ( odd) with respect to a suitable
geometric collection and we compare it with the Castelnuovo-Mumford regularity
of their extension by zero in \PP^{n+1}.Comment: To appear in Math. Proc. Cambridg
Fermionic construction of partition function for multi-matrix models and multi-component TL hierarchy
We use -component fermions to present -fold
integrals as a fermionic expectation value. This yields fermionic
representation for various -matrix models. Links with the -component
KP hierarchy and also with the -component TL hierarchy are discussed. We
show that the set of all (but two) flows of -component TL changes standard
matrix models to new ones.Comment: 16 pages, submitted to a special issue of Theoretical and
Mathematical Physic
Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
Let X be an algebraic variety with an action of an algebraic group G. Suppose
X has a full exceptional collection of sheaves, and these sheaves are invariant
under the action of the group. We construct a semiorthogonal decomposition of
bounded derived category of G-equivariant coherent sheaves on X into
components, equivalent to derived categories of twisted representations of the
group. If the group is finite or reductive over the algebraically closed field
of zero characteristic, this gives a full exceptional collection in the derived
equivariant category. We apply our results to particular varieties such as
projective spaces, quadrics, Grassmanians and Del Pezzo surfaces.Comment: 28 pages, uses XY-pi
Engineered Optical Nonlocality in Nanostructured Metamaterials
We analyze dispersion properties of metal-dielectric nanostructured
metamaterials. We demonstrate that, in a sharp contrast to the results for the
corresponding effective medium, the structure demonstrates strong optical
nonlocality due to excitation of surface plasmon polaritons that can be
engineered by changing a ratio between the thicknesses of metal and dielectric
layers. In particular, this nonlocality allows the existence of an additional
extraordinary wave that manifests itself in the splitting of the TM-polarized
beam scattered at an air-metamaterial interface
Bound, virtual and resonance -matrix poles from the Schr\"odinger equation
A general method, which we call the potential -matrix pole method, is
developed for obtaining the -matrix pole parameters for bound, virtual and
resonant states based on numerical solutions of the Schr\"odinger equation.
This method is well-known for bound states. In this work we generalize it for
resonant and virtual states, although the corresponding solutions increase
exponentially when . Concrete calculations are performed for the
ground and the first excited states of , the resonance
states (, ), low-lying states of and
, and the subthreshold resonances in the proton-proton system. We
also demonstrate that in the case the broad resonances their energy and width
can be found from the fitting of the experimental phase shifts using the
analytical expression for the elastic scattering -matrix. We compare the
-matrix pole and the -matrix for broad resonance in
Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and
4 table
- …