4,148 research outputs found

    Derived categories of Burniat surfaces and exceptional collections

    Full text link
    We construct an exceptional collection Υ\Upsilon of maximal possible length 6 on any of the Burniat surfaces with KX2=6K_X^2=6, a 4-dimensional family of surfaces of general type with pg=q=0p_g=q=0. We also calculate the DG algebra of endomorphisms of this collection and show that the subcategory generated by this collection is the same for all Burniat surfaces. The semiorthogonal complement A\mathcal A of Υ\Upsilon is an "almost phantom" category: it has trivial Hochschild homology, and K_0(\mathcal A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande

    Ringlike inelastic events in cosmic rays and accelerators

    Get PDF
    In cosmic rays and in accelerators there were observed single inelastic processes with densely produced (azimuthally isotropic) groups of particles exhibiting spikes in the pseudorapidity plot of an individual event (i.e. ringlike events). Theoretically the existence of such processes was predicted as a consequence of Cerenkov gluon radiation or, more generally, of deconfinement radiation. Nowadays some tens of such events have been accumulated at 400 GeV and at 150 TeV. Analyzing ringlike events in proton-nucleon interactions at 400 GeV/c it is shown that they exhibit striking irregularity in the positions of pseudorapidity spikes' centers which tend to lie mostly at 55,90 and 125 deg in cms. It implies rather small deconfinement lengths of the order of some fermi

    Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions

    Full text link
    A new representation of the 2N fold integrals appearing in various two-matrix models that admit reductions to integrals over their eigenvalues is given in terms of vacuum state expectation values of operator products formed from two-component free fermions. This is used to derive the perturbation series for these integrals under deformations induced by exponential weight factors in the measure, expressed as double and quadruple Schur function expansions, generalizing results obtained earlier for certain two-matrix models. Links with the coupled two-component KP hierarchy and the two-component Toda lattice hierarchy are also derived.Comment: Submitted to: "Random Matrices, Random Processes and Integrable Systems", Special Issue of J. Phys. A, based on the Centre de recherches mathematiques short program, Montreal, June 20-July 8, 200

    Geometric collections and Castelnuovo-Mumford Regularity

    Full text link
    The paper begins by overviewing the basic facts on geometric exceptional collections. Then, we derive, for any coherent sheaf \cF on a smooth projective variety with a geometric collection, two spectral sequences: the first one abuts to \cF and the second one to its cohomology. The main goal of the paper is to generalize Castelnuovo-Mumford regularity for coherent sheaves on projective spaces to coherent sheaves on smooth projective varieties XX with a geometric collection σ\sigma . We define the notion of regularity of a coherent sheaf \cF on XX with respect to σ\sigma. We show that the basic formal properties of the Castelnuovo-Mumford regularity of coherent sheaves over projective spaces continue to hold in this new setting and we show that in case of coherent sheaves on \PP^n and for a suitable geometric collection of coherent sheaves on \PP^n both notions of regularity coincide. Finally, we carefully study the regularity of coherent sheaves on a smooth quadric hypersurface Q_n \subset \PP^{n+1} (nn odd) with respect to a suitable geometric collection and we compare it with the Castelnuovo-Mumford regularity of their extension by zero in \PP^{n+1}.Comment: To appear in Math. Proc. Cambridg

    Fermionic construction of partition function for multi-matrix models and multi-component TL hierarchy

    Full text link
    We use pp-component fermions (p=2,3,...)(p=2,3,...) to present (2p−2)N(2p-2)N-fold integrals as a fermionic expectation value. This yields fermionic representation for various (2p−2)(2p-2)-matrix models. Links with the pp-component KP hierarchy and also with the pp-component TL hierarchy are discussed. We show that the set of all (but two) flows of pp-component TL changes standard matrix models to new ones.Comment: 16 pages, submitted to a special issue of Theoretical and Mathematical Physic

    Semiorthogonal decompositions of derived categories of equivariant coherent sheaves

    Full text link
    Let X be an algebraic variety with an action of an algebraic group G. Suppose X has a full exceptional collection of sheaves, and these sheaves are invariant under the action of the group. We construct a semiorthogonal decomposition of bounded derived category of G-equivariant coherent sheaves on X into components, equivalent to derived categories of twisted representations of the group. If the group is finite or reductive over the algebraically closed field of zero characteristic, this gives a full exceptional collection in the derived equivariant category. We apply our results to particular varieties such as projective spaces, quadrics, Grassmanians and Del Pezzo surfaces.Comment: 28 pages, uses XY-pi

    Engineered Optical Nonlocality in Nanostructured Metamaterials

    Get PDF
    We analyze dispersion properties of metal-dielectric nanostructured metamaterials. We demonstrate that, in a sharp contrast to the results for the corresponding effective medium, the structure demonstrates strong optical nonlocality due to excitation of surface plasmon polaritons that can be engineered by changing a ratio between the thicknesses of metal and dielectric layers. In particular, this nonlocality allows the existence of an additional extraordinary wave that manifests itself in the splitting of the TM-polarized beam scattered at an air-metamaterial interface

    Bound, virtual and resonance SS-matrix poles from the Schr\"odinger equation

    Get PDF
    A general method, which we call the potential SS-matrix pole method, is developed for obtaining the SS-matrix pole parameters for bound, virtual and resonant states based on numerical solutions of the Schr\"odinger equation. This method is well-known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when r→∞r\to\infty. Concrete calculations are performed for the 1+1^+ ground and the 0+0^+ first excited states of 14N^{14}\rm{N}, the resonance 15F^{15}\rm{F} states (1/2+1/2^+, 5/2+5/2^+), low-lying states of 11Be^{11}\rm{Be} and 11N^{11}\rm{N}, and the subthreshold resonances in the proton-proton system. We also demonstrate that in the case the broad resonances their energy and width can be found from the fitting of the experimental phase shifts using the analytical expression for the elastic scattering SS-matrix. We compare the SS-matrix pole and the RR-matrix for broad s1/2s_{1/2} resonance in 15F{}^{15}{\rm F}Comment: 14 pages, 5 figures (figures 3 and 4 consist of two figures each) and 4 table
    • …
    corecore