468 research outputs found

    Coarsening Dynamics of a Nonconserved Field Advected by a Uniform Shear Flow

    Full text link
    We consider the ordering kinetics of a nonconserved scalar field advected by a uniform shear flow. Using the Ohta-Jasnow-Kawasaki approximation, modified to allow for shear-induced anisotropy, we calculate the asymptotic time dependence of the characteristic length scales, L_parallel and L_perp, that describe the growth of order parallel and perpendicular to the mean domain orientation. In space dimension d=3 we find, up to constants, L_parallel = gamma t^{3/2}, L_perp = t^{1/2}, where gamma is the shear rate, while for d = 2 we find L_parallel = gamma^{1/2} t (ln t)^{1/4}, L_perp = gamma^{-1/2}(ln t)^{-1/4} . Our predictions for d=2 can be tested by experiments on twisted nematic liquid crystals.Comment: RevTex, 4 page

    Dynamics and delocalisation transition for an interface driven by a uniform shear flow

    Full text link
    We study the effect of a uniform shear flow on an interface separating the two broken-symmetry ordered phases of a two-dimensional system with nonconserved scalar order parameter. The interface, initially flat and perpendicular to the flow, is distorted by the shear flow. We show that there is a critical shear rate, \gamma_c, proportional to 1/L^2, (where L is the system width perpendicular to the flow) below which the interface can sustain the shear. In this regime the countermotion of the interface under its curvature balances the shear flow, and the stretched interface stabilizes into a time-independent shape whose form we determine analytically. For \gamma > \gamma_c, the interface acquires a non-zero velocity, whose profile is shown to reach a time-independent limit which we determine exactly. The analytical results are checked by numerical integration of the equations of motion.Comment: 5 page

    Influence of off-cut angle of (0001) 4H-SiC on the crystal quality of InN grown by RF-MBE

    Get PDF
    AbstractThe effect of the off-cut angle of a 4H-SiC (0001) substrate on the growth of InN thick layer by RF-plasma assisted molecular beam epitaxy (RF-MBE) has been investigated. The off-cut angle used in this study was inclined from 0° (just surface) toward the [11–20] direction of 4° and 8°. Crystalline quality and surface morphology were remarkably sensitive to the value of off-angle. Higher off-cut angles result in a reduction of the full-widths at half-maximum of HRXRD (0002) ω-scans, compared to that of the layer on the (0001)-just surface. In addition, the full-widths at halfmaximum of μ-Raman scattering spectra at 490cm-1, which is attributed to E2 (high) phonon mode, was decreased with increase in off-cut angle. Furthermore, In-droplets, which are commonly observed on the (0001) InN grown surface under In rich-growth condition, were found to be suppressed owing to an improvement of a nucleation on the off-cut angle surface. In our case, the use of 8°-off substrate increased film density and growth rate, while a surface roughness was reduced. These results clearly demonstrate that the larger off-cut angles improve the crystalline quality of InN film with reducing the In-droplets due to a higher step surface density on the off-cut angle surface

    High Resolution T-O-F Positron Emission Tomograph

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    A Program for Computation of Magnetic Field of an Electromagnet

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore