5,574 research outputs found
Design of wideband vibration-based electromagnetic generator by means of dual-resonator
This paper describes the design of a wideband electromagnetic energy harvester that utilizes a novel dual-resonator method to improve the operational frequency range of the vibration-based generator. The device consists of two separate resonator systems (coil and magnet), which each comply with their respective resonance frequencies. This is because both resonators are designed in such a way that both magnet and coil components will oscillate at an additive phase angle, and hence create greater relative motion between the two dominating resonance frequencies, which realizes the wideband generator. Each resonator system consists of a distinctive cantilever beam, one attached with four magnets and steel keepers, the other attached with a copper coil and stainless steel holder as the free end mass. Both cantilevers are clamped and fitted to a common base that is subjected to a vibration source. Basic analytical models are derived and a numerical model is implemented in MATLAB-Simulink. Electromagnetic, structural modal and static mechanical analysis for the design of the prototype are completed using ANSYS finite element tools. For a 0.8 m s−2 acceleration, the open-loop voltage obtained from the experiment shows a good correlation with those from the simulation. Peak induced voltage is measured to be 259.5Vrms as compared to 240.9Vrms from the simulator at 21.3 Hz, which implies an error range of 7.7%. The results also indicate that there is a maximum of 58.22% improvement in the induced voltage within the intermediate region which occurs at the intersection point between the output response plots of two single resonator generators
Focused-ion-beam-induced deposition of superconducting nanowires
Superconducting nanowires, with a critical temperature of 5.2 K, have been
synthesized using an ion-beam-induced deposition, with a Gallium focused ion
beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with
atomic concentrations of about 40, 40, and 20 % for W, C, and Ga, respectively.
Zero Kelvin values of the upper critical field and coherence length of 9.5 T
and 5.9 nm, respectively, are deduced from the resistivity data at different
applied magnetic fields. The critical current density is Jc= 1.5 10^5 A/cm2 at
3 K. This technique can be used as a template-free fabrication method for
superconducting devices.Comment: Accepted for publication in Applied Physics Letter
Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications
Due to the increasing demand for harvesting energy from environmental vibration, for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted great interest from various parties and become one of the most common approaches to convert redundant mechanical energy into electrical energy. As the output voltage produces from a piezoelectric material depends greatly on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beams that have been overseen in most of the prior literature. Both analytical and finite element models are derived and the resultant strain distributions in the beam are computed based on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a vibration-based energy harvester system is verified. Lastly, experimental results comparing the power density for a triangular and rectangular piezoelectric beams are also presented to validate the finding of the study and the claim as suggested in the literature is verified
Modelling and optimisation of a bimorph piezoelectric cantilever beam in an energy harvesting application
Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs
Comparative Assessment of LES and URANS for Flow Over a Cylinder at a Reynolds Number of 3900
Numerical simulations utilising turbulence models based on the Reynolds Averaged Navier Stokes (RANS) equations generally exhibit poor performance in predicting separated flow around cylinders. This paper assesses potential improvements offered by the three-dimensional unsteady RANS and Large Eddy Simulation (LES) methodologies in replicating the flow around a cylinder at a Reynolds number, based on diameter, of 3900. The performance is assessed against corresponding experimental data and two-dimensional unsteady RANS turbulence simulations
Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star
The gravitational wave signal generated by global, nonaxisymmetric shear
flows in a neutron star is calculated numerically by integrating the
incompressible Navier--Stokes equation in a spherical, differentially rotating
shell. At Reynolds numbers \Rey \gsim 3 \times 10^{3}, the laminar Stokes
flow is unstable and helical, oscillating Taylor--G\"ortler vortices develop.
The gravitational wave strain generated by the resulting kinetic-energy
fluctuations is computed in both and polarizations as a function
of time. It is found that the signal-to-noise ratio for a coherent,
-{\rm s} integration with LIGO II scales as for a star at 1 {\rm kpc} with angular velocity
. This should be regarded as a lower limit: it excludes pressure
fluctuations, herringbone flows, Stuart vortices, and fully developed
turbulence (for \Rey \gsim 10^{6}).Comment: (1) School of Physics, University of Melbourne, Parkville, VIC 3010,
Australia. (2) Departamento de Fisica, Escuela de Ciencias,Universidad de
Oriente, Cumana, Venezuela, (3) Department of Mechanical Engineering,
University of Melbourne, Parkville, VIC 3010, Australia. Accepted for
publication in The Astrophysical Journal Letter
Herbicide impacts on exotic grasses and a population of the critically endangered herb "Calystegia affinis" (Convolvulaceae) on Lord Howe Island
Introduced perennial grasses are capable of altering the habitat of native species, causing reductions in population size and vigour, and potentially affecting life-history processes such as survival, pollination and seedling recruitment. We examined the utility of herbicide treatment on two exotic grasses, Pennisetum clandestinum (Kikuyu) and Stenotaphrum secundatum (Buffalo grass) to restore the habitat of Calystegia affinis, a critically endangered species endemic to Lord Howe and Norfolk Islands. Using two herbicides, Asset (designed to affect only grasses) and Glyphosate (a general herbicide), we compared effectiveness in reducing grass cover on a population of Calystegia affinis. We protected Calystegia plants from the herbicides by ensuring their leaves were covered by plastic bags during herbicide application. Both herbicides were similarly effective in reducing grass cover after four weeks and had no noticeable adverse affect on Calystegia (suggesting the plastic bag protection was effective). After 26 weeks, Glyphosate was more effective in maintaining a reduced grass cover. Plots treated with either herbicide had a greater relative increase in abundance of Calystegia stems compared to untreated controls. The Glyphosate treatment resulted in the greatest relative increase in stem abundance, but this was not significantly greater than in the Asset treatment. We consider that spraying with Glyphosate treatment, with follow-up monitoring and spot-spraying, will assist the recovery of the Calystegia affinis population. Ultimately, the maintenance of a weed-free zone at the forest edge will provide suitable habitat for additional recruitment of this and other native species
- …