532 research outputs found
STRUCTURAL CHANGE IN U.S. CHICKEN AND TURKEY SLAUGHTER
Cost function analyses using data from the U.S. Bureau of the Census reveal substantial scale economies in chicken and turkey slaughter. These economies show no evidence of diminishing as plant size increases, are much greater than those realized in cattle and hog slaughter, and have resulted in a huge increase in plant size over the 1972-92 period. The findings also suggest that consolidation in the chicken and turkey slaughter industry is likely to continue, particularly if the growth in the demand for poultry diminishes.chicken slaughter, turkey slaughter, production costs, structural change, Livestock Production/Industries,
Generalization and evaluation of the process-based forest ecosystem model PnET-CN for other biomes
Terrestrial ecosystems play an important role in carbon, water, and nitrogen cycling. Process-based ecosystem models, including PnET-CN, have been widely used to simulate ecosystem processes during the last two decades. PnET-CN is a forest ecosystem model, originally designed to predict ecosystem carbon, water, and nitrogen dynamics of temperate forests under a variety of circumstances. Among terrestrial ecosystem models, PnET-CN offers unique benefits, including simplicity and transparency of its structure, reliance on data-driven parameterization rather than calibration, and use of generalizeable relationships that provide explicit linkages among carbon, water and nitrogen cycles. The objective of our study was to apply PnET-CN to non-forest biomes: grasslands, shrublands, and savannas. We determined parameter values for grasslands and shrublands using the literature and ecophysiological databases. To assess the usefulness of PnET-CN in these ecosystems, we simulated carbon and water fluxes for six AmeriFlux sites: two grassland sites (Konza Prairie and Fermi Prairie), two open shrubland sites (Heritage Land Conservancy Pinyon Juniper Woodland and Sevilleta Desert Shrubland), and two woody savanna sites (Freeman Ranch and Tonzi Ranch). Grasslands and shrublands were simulated using the biome-specific parameters, and savannas were simulated as mixtures of grasslands and forests. For each site, we used flux observations to evaluate modeled carbon and water fluxes: gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), evapotranspiration (ET), and water yield. We also evaluated simulated water use efficiency (WUE). PnET-CN generally captured the magnitude, seasonality, and interannual variability of carbon and water fluxes as well as WUE for grasslands, shrublands, and savannas. Overall, our results show that PnET-CN is a promising tool for modeling ecosystem carbon and water fluxes for non-forest biomes (grasslands, shrublands, and savannas), and especially for modeling GPP in mature biomes. Limitations in model performance included an overestimation of seasonal variability in GPP and ET for the two shrubland sites and overestimation of early season ER for the two shrubland sites and Freeman Ranch. Future modifications of PnET-CN for non-forest biomes should focus on belowground processes, including water storage in dry shrubland soils, root growth and respiration in grasslands, and soil carbon fluxes for all biomes
On Factor Universality in Symbolic Spaces
The study of factoring relations between subshifts or cellular automata is
central in symbolic dynamics. Besides, a notion of intrinsic universality for
cellular automata based on an operation of rescaling is receiving more and more
attention in the literature. In this paper, we propose to study the factoring
relation up to rescalings, and ask for the existence of universal objects for
that simulation relation. In classical simulations of a system S by a system T,
the simulation takes place on a specific subset of configurations of T
depending on S (this is the case for intrinsic universality). Our setting,
however, asks for every configurations of T to have a meaningful interpretation
in S. Despite this strong requirement, we show that there exists a cellular
automaton able to simulate any other in a large class containing arbitrarily
complex ones. We also consider the case of subshifts and, using arguments from
recursion theory, we give negative results about the existence of universal
objects in some classes
STRUCTURAL CHANGE IN THE U.S. MEAT AND POULTRY INDUSTRIES
Market structure, concentration, meat industry, poultry industry, Industrial Organization,
CONSOLIDATION IN U.S. MEATPACKING
Meatpacking consolidated rapidly in the last two decades: slaughter plants became much larger, and concentration increased as smaller firms left the industry. We use establishment-based data from the U.S. Census Bureau to describe consolidation and to identify the roles of scale economies and technological change in driving consolidation. Through the 1970's, larger plants paid higher wages, generating a pecuniary scale diseconomy that largely offset the cost advantages that technological scale economies offered large plants. The larger plants' wage premium disappeared in the 1980's, and technological change created larger and more extensive technological scale economies. As a result, large plants realized growing cost advantages over smaller plants, and production shifted to larger plants.Concentration, consolidation, meatpacking, scale economies, structural change, Industrial Organization, Livestock Production/Industries,
Modeling physical and chemical climate of the northeastern United States for a geographic information system
A model of physical and chemical climate was developed for New York and New England that can be used in a GIs for integration with ecosystem models. The variables included are monthly average maximum and minimum daily temperatures, precipitation, humidity, and solar radiation, as well as annual atmospheric deposition of sulfur and nitrogen. Equations generated from regional data bases were combined with a digital elevation model of the region to generate digital coverages of each variable
Positron-Emission Tomography
We review positron-emission tomography (PET), which has inherent advantages that avoid the shortcomings of other nuclear medicine imaging methods. PET image reconstruction methods with origins in signal and image processing are discussed, including the potential problems of these methods. A summary of statistical image reconstruction methods, which can yield improved image quality, is also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85853/1/Fessler95.pd
Development of scenarios for land cover, population density, impervious cover, and conservation in New Hampshire, 2010–2100
Future changes in ecosystem services will depend heavily on changes in land cover and land use, which, in turn, are shaped by human activities. Given the challenges of predicting long-term changes in human behaviors and activities, scenarios provide a framework for simulating the long-term consequences of land-cover change on ecosystem function. As input for process-based models of terrestrial and aquatic ecosystem function, we developed scenarios for land cover, population density, and impervious cover for the state of New Hampshire for 2020–2100. Key drivers of change were identified through information gathered from six sources: historical trends, existing plans relating to New Hampshire’s land-cover future, surveys, existing population scenarios, key informant interviews with diverse stakeholders, and input from subject-matter experts. Scenarios were developed in parallel with information gathering, with details added iteratively as new questions emerged. The final scenarios span a continuum from spatially dispersed development with a low value placed on ecosystem services (Backyard Amenities) to concentrated development with a high value placed on ecosystem services (the Community Amenities family). The Community family includes two population scenarios (Large Community and Small Community), to be combined with two scenarios for land cover (Protection of Wildlands and Promotion of Local Food), producing combinations that bring the total number of scenarios to six. Between Backyard Amenities and Community Amenities is a scenario based on linear extrapolations of current trends (Linear Trends). Custom models were used to simulate decadal change in land cover, population density, and impervious cover. We present raster maps and proportion of impervious cover for HUC10 watersheds under each scenario and discuss the trade-offs of our translation and modeling approach within the context of contemporary scenario projects
A 1-DOF Assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs
We propose a novel control method for lowerlimb assist that produces a virtual modification of the mechanical impedance of the human limbs. This effect is accomplished through the use of an exoskeleton that displays active impedance. The proposed method is aimed at improving the dynamic response of the human limbs, while preserving the user's control authority. Our goal is to use active-impedance exoskeleton control to improve the user's agility of motion, for example by reducing the average time needed to complete a movement. Our control method has been implemented in a 1-DOF exoskeleton designed to assist human subjects performing knee flexions and extensions. In this paper we discuss an initial study on the effect of negative exoskeleton damping (a particular case of active-impedance control) on the subject's time to complete a target-reaching motion. Experimental results show this effect to be statistically significant. On average, subjects were able to reduce the time to complete the motion by 16%
- …