11,917 research outputs found
Higgs Mechanism for Gravitons
Just like the vector gauge bosons in the gauge theories, it is now known that
gravitons acquire mass in the process of spontaneous symmetry breaking of
diffeomorphisms through the condensation of scalar fields. The point is that we
should find the gravitational Higgs mechanism such that it results in massive
gravity in a flat Minkowski space-time without non-unitary propagating modes.
This is usually achieved by including higher-derivative terms in scalars and
tuning the cosmological constant to be a negative value in a proper way.
Recently, a similar but different gravitational Higgs mechanism has been
advocated by Chamseddine and Mukhanov where one can relax the negative
cosmological constant to zero or positive one. In this work, we investigate why
the non-unitary ghost mode decouples from physical Hilbert space in a general
space-time dimension. Moreover, we generalize the model to possess an arbitrary
potential and clarify under what conditions the general model exhibits the
gravitational Higgs mechanism. By searching for solutions to the conditions, we
arrive at two classes of potentials exhibiting gravitational Higgs mechanism.
One class includes the model by Chamseddine and Mukhanov in a specific case
while the other is completely a new model.Comment: 11 page
On Unitarity of Massive Gravity in Three Dimensions
We examine a unitarity of a particular higher-derivative extension of general
relativity in three space-time dimensions, which has been recently shown to be
equivalent to the Pauli-Fierz massive gravity at the linearized approximation
level, and explore a possibility of generalizing the model to higher space-time
dimensions. We find that the model in three dimensions is indeed unitary in the
tree-level, but the corresponding model in higher dimensions is not so due to
the appearance of non-unitary massless spin-2 modes.Comment: 10 pages, references adde
Classical Solutions of Ghost Condensation Models
Motivated by ideas obtained from both ghost condensation and gravitational
Higgs mechanism, we attempt to find classical solutions in the unitary gauge in
general ghost condensation models. It is shown that depending on the form of
scalar fields in an action, there are three kinds of exact solutions, which are
(anti-) de Sitter space-time, polynomially expanding universes and flat
Minkowski space-time. We briefly comment on gravitational Higgs mechanism in
these models where we have massive gravitons of 5 degrees of freedom and 1
unitary scalar field (Nambu-Goldstone boson) after spontaneous symmetry
breakdown of general coordinate reparametrization invariance. The models at
hand are free from the problem associated with the non-unitary propagating
mode.Comment: 9 pages, no figure
STM/STS Study on 4a X 4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2O8+d
We performed low-bias STM measurements on underdoped Bi2212 crystals, and
confirmed that a two-dimensional (2D) superstructure with a periodicity of four
lattice constants (4a) is formed within the Cu-O plane at T<Tc. This 4a X 4a
superstructure, oriented along the Cu-O bonding direction, is nondispersive and
more intense in lightly doped samples with a zero temperature pseudogap (ZTPG)
than in samples with a d-wave gap. The nondispersive 4a X 4a superstructure was
clearly observed within the ZTPG or d-wave gap, while it tended to fade out
outside the gaps. The present results provide a useful test for various models
proposed for an electronic order hidden in the underdoped region of high-Tc
cuprates.Comment: 4 pages, submitted to J. Phys. Soc. Jp
Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}
Our inelastic neutron scattering experiments of the spin excitations in the
slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the
application of a magnetic field of 5 Tesla, the low-temperature susceptibility
undergoes a weight redistribution centered at the spin-gap energy. Furthermore,
by comparing the temperature dependence of the neutron data with
ac-susceptibility and magnetization measurements, we conclude that the filling
in of the spin gap tracks the irreversibility/melting temperature rather than
Tc2, which indicates an unusual interplay between the magnetic vortices and the
spin excitations even in the slightly overdoped regime of high-temperature
superconductors.Comment: 7 pages, including 5 figure
Variation of Electrostatic Coupling and Investigation of Current Percolation Paths in Nanocrystalline Silicon Cross Transistors
Nanocrystalline silicon thin films are promising materials for the development of advanced Large Scale Integration compatible quantum-dot and single-electron charging devices. The films consist of nanometer-scale grains of crystalline silicon, separated by amorphous silicon or silicon dioxide grain boundaries up to a few nanometer thick. These films have been used to fabricate single-electron transistor and memory devices, where the grains form single-electron charging islands isolated by tunnel barriers formed by the grain boundaries. The grain boundary tunnel barrier isolating the grains is also of great importance, as this determines the extent of the electrostatic and tunnel coupling between different grains. These effects can lead to the nanocrystalline silicon thin film behaving as a system of coupled quantum dots.& more..
X-ray and gamma-ray astronomy
Cosmic origin of X- and gamma ray
- …