381 research outputs found

    Light dressed-excitons in an incoherent-electron sea: Evidence for Mollow-triplet and Autler-Townes doublet

    Get PDF
    We demonstrate that the interaction between excitons and a sea of incoherent electrons does not preclude excitons dressing by light. We investigate the role of exciton-electron scattering in the light dressing by measuring the dynamical absorption spectrum of a modulation-doped CdTe quantum well, which shows a clear evidence for significant electron scattering of the excitonic states. We show the occurrence of dressed and correlated excitons by detecting quantum coherent interferences through excitonic Autler-Townes doublet and ac Stark splitting, which evolves to Mollow triplet with gain. We also evidence the partial inhibition of the electron-exciton scattering by exciton-light coupling

    2D Fourier Transform Spectroscopy of exciton-polaritons and their interactions

    Get PDF
    We investigate polariton-polariton interactions in a semiconductor microcavity through two-dimensional Fourier transform (2DFT) spectroscopy. We observe, in addition to the lower-lower and the upper-upper polariton self-interaction, a lower-upper cross-interaction. This appears as separated peaks in the on-diagonal and off-diagonal part of 2DFT spectra. Moreover, we elucidate the role of the polariton dispersion through a fine structure in the 2DFT spectrum. Simulations, based on lower-upper polariton basis Gross-Pitaevskii equations including both self and cross-interactions, result in a 2DFT spectra in qualitative agreement with experiments

    Cross Feshbach resonance

    Get PDF
    Feshbach resonance occurs when a pair of free particles is resonantly coupled to a molecular bound state. In the field of ultracold quantum gases, atomic Feshbach resonances became a usual tool for tailoring atomic interactions opening up many new applications in this field. In a semiconductor microcavity, the Feshbach resonance appears when two lower polaritons are coupled to the molecular biexciton state. Here, we demonstrate the existence of a cross Feshbach resonance for which a pair of polaritons, lower together with upper, effectively couples to the biexciton state. This demonstration is a crucial step towards the efficient generation of entangled photon pairs in a semiconductor microcavity. The existence of a Cross Feshbach resonance establishes the condition to convert a pair of upper and lower polaritons via the biexciton state into two lower polaritons, paving the way for the generation of momentum and polarization entangled photons.Comment: 7 pages, 3 figure

    Interacting many-body systems in quantum wells: Evidence for exciton-trion-electron correlations

    Get PDF
    We report on the nonlinear optical dynamical properties of excitonic complexes in CdTe modulation-doped quantum wells, due to many-body interactions among excitons, trions and electrons. These were studied by time and spectrally resolved pump-probe experiments. The results reveal that the nonlinearities induced by trions differ from those induced by excitons, and in addition they are mutually correlated. We propose that the main source of these subtle differences comes from the Pauli exclusion-principle through phase-space filling and short-range fermion exchange.Comment: 5 pages, 4 figures. accepted for publications in Phys. Rev.

    From single particle to superfuid excitations in a dissipative polariton gas

    Get PDF
    Using angle-resolved heterodyne four-wave-mixing technique, we probe the low momentum excitation spectrum of a coherent polariton gas. The experimental results are well captured by the Bogoliubov transformation which describes the transition from single particle excitations of a normal fluid to sound-wave-like excitations of a superfluid. In a dense coherent polariton gas, we find all the characteristics of a Bogoliubov transformation, i.e. the positive and negative energy branch with respect to the polariton gas energy at rest, sound-wave-like shapes for the excitations dispersion, intensity and linewidth ratio between the two branches in agreement with the theory. The influence of the non-equilibrium character of the polariton gas is shown by a careful analysis of its dispersion.Comment: 4 pages, 3 figure

    Direct measure of the exciton formation in quantum wells from time resolved interband luminescence

    Get PDF
    We present the results of a detailed time resolved luminescence study carried out on a very high quality InGaAs quantum well sample where the contributions at the energy of the exciton and at the band edge can be clearly separated. We perform this experiment with a spectral resolution and a sensitivity of the set-up allowing to keep the observation of these two separate contributions over a broad range of times and densities. This allows us to directly evidence the exciton formation time, which depends on the density as expected from theory. We also evidence the dominant contribution of a minority of excitons to the luminescence signal, and the absence of thermodynamical equilibrium at low densities

    A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland

    Full text link
    An important component of the Alpine vertebrate record of Late Triassic age derives from the Kössen Formation, which crops out extensively in the eastern Alps. Here, we present an isolated and only partially preserved large rib, which carries an osteoderm on a low uncinate process. Osteological comparison indicates that the specimen likely belongs to a small clade of marine reptiles, Saurosphargidae. Members of the clade are restricted to the western (today Europe) and eastern margins of the Tethys (today China) and were so far known only from the Anisian stage of the Middle Triassic. The assignment of the new find to cf. Saurosphargidae, with potential affinities to the genus Largocephalosaurus from the Guanling Formation of Yunnan and Guizhou Provinces, China, would extend the occurrence of the clade about 35 million years into the Late Triassic

    Examination of contacts between strands by electrical measurements and topographical analysis

    Get PDF
    The contact resistance (crossing and adjacent) between the strands of Rutherford type superconducting cables has been proven to be an essential parameter for the behaviour of the main magnets in accelerators like the LHC. A strong development program has been launched at CERN. Contact resistances were measured by means of a DC method at 4.2 K. The strand deformation and the chemical conditions at the contacts were analyzed in order to interpret the electrical resistances measured by a 3 contacts method on individual strands as well as the resistances measured independently on cables
    • …
    corecore