346 research outputs found
The CYP2J2 G-50T polymorphism and myocardial infarction in patients with cardiovascular risk profile
<p>Abstract</p> <p>Background</p> <p>Cytochrome P450 (CYP) enzyme 2J2, an epoxygenase predominantly expressed in the heart, metabolises arachidonic acid to biologically active eicosanoids. One of the CYP2J2 products, 11, 12-epoxyeicosatrienoic acid, has several vasoprotective effects. The CYP2J2-G-50T-promotor polymorphism decreases gene expression and is associated with coronary artery disease. This association supports the vascular protective role of CYP-derived eicosanoids in cardiovascular disease. In the present study, we investigated the influence of this polymorphism on survived myocardial infarction in two study groups of patients with on average high cardiovascular risk profile.</p> <p>Methods</p> <p>The CYP2J2 polymorphism was genotyped in two groups of patients that were collected with the same method of clinical data collection. Data from 512 patients with sleep apnoea (group: OSA) and on average high cardiovascular risk profile and from another 488 patients who were admitted for coronary angiography (CAR-group) were evaluated for a potential correlation of the CYP2J2 polymorphism G-50T and a history of myocardial infarction. The G-50T polymorphism of the CYP2J2 gene was genotyped by allele specific restriction and light cycler analysis.</p> <p>Results</p> <p>The T-allele of the polymorphism was found in 111 (11.1%; CAR-group: N = 65, 13.3%; OSA: N = 46, 9.0%). 146 patients had a history of myocardial infarction (CAR: N = 120, 24.6%; OSA: N = 26, 5.1%). Cardiovascular risk factors were equally distributed between the different genotypes of the CYP2J2 G-50T polymorphism. In the total group of 1000 individuals, carriers of the T-allele had significantly more myocardial infarctions compared to carriers of the wild type (T/T or G/T: 21.6%; G/G: 13.7%; p = 0.026, odds ratio 1.73, 95%-CI [1.06–2.83]). In the multivariate logistic regression analysis the odds ratio for a history of myocardial infarction in carriers of the T-allele was 1.611, 95%-CI [0.957–2.731] but this trend was not significant (p = 0.073).</p> <p>Conclusion</p> <p>In presence of other risk factors, the CYP2J2 G-50T failed to show a significant role in the development of myocardial infarction. However, since our result is close to the border of significance, this question should be clarified in larger, prospective studies in the future.</p
Profile of Lipid and Protein Autacoids in Diabetic Vitreous Correlates With the Progression of Diabetic Retinopathy
OBJECTIVE:
This study was aimed at obtaining a profile of lipids and proteins with a paracrine function in normal and diabetic vitreous and exploring whether the profile correlates with retinal pathology.
RESEARCH DESIGN AND METHODS:
Vitreous was recovered from 47 individuals undergoing vitreoretinal surgery: 16 had nonproliferative diabetic retinopathy (NPDR), 15 had proliferative diabetic retinopathy, 7 had retinal detachments, and 9 had epiretinal membranes. Protein and lipid autacoid profiles were determined by protein arrays and mass spectrometry-based lipidomics.
RESULTS:
Vitreous lipids included lipoxygenase (LO)- and cytochrome P450 epoxygenase (CYP)-derived eicosanoids. The most prominent LO-derived eicosanoid was 5-hydroxyeicosate traenoic acid (HETE), which demonstrated a diabetes-specific increase (P = 0.027) with the highest increase in NPDR vitreous. Vitreous also contained CYP-derived epoxyeicosatrienoic acids; their levels were higher in nondiabetic than diabetic vitreous (P < 0.05). Among inflammatory, angiogenic, and angiostatic cytokines and chemokines, only vascular endothelial growth factor (VEGF) showed a significant diabetes-specific profile (P < 0.05), although a similar trend was noted for tumor necrosis factor (TNF)-alpha. Soluble VEGF receptors R1 and R2 were detected in all samples with lowest VEGF-R2 levels (P < 0.05) and higher ratio of VEGF to its receptors in NPDR and PDR vitreous.
CONCLUSIONS:
This study is the first to demonstrate diabetes-specific changes in vitreous lipid autacoids including arachidonate and docosahexanoate-derived metabolites indicating an increase in inflammatory versus anti-inflammatory lipid mediators that correlated with increased levels of inflammatory and angiogenic proteins, further supporting the notion that inflammation plays a role the pathogenesis of this disease
Reduction in blood pressure for elevated blood pressure/stage 1 hypertension according to the American College of Cardiology/American Heart Association guideline and cardiovascular outcomes
Aims Few studies have examined the relationship of blood pressure (BP) change in adults with elevated BP or stage 1 hypertension according to the American College of Cardiology (ACC)/American Heart Association (AHA) guideline with cardiovascular outcomes. We sought to identify the effect of BP change among individuals with elevated BP or stage 1 hypertension on incident heart failure (HF) and other cardiovascular diseases (CVDs). Methods We conducted a retrospective cohort study including 616 483 individuals (median age 46 years, 73.7% men) with elevated and results BP or stage 1 hypertension based on the ACC/AHA BP guideline. Participants were categorized using BP classification at one-year as normal BP (n = 173 558), elevated BP/stage 1 hypertension (n = 367 454), or stage 2 hypertension (n = 75 471). The primary outcome was HF, and the secondary outcomes included (separately) myocardial infarction (MI), angina pectoris (AP), and stroke. Over a mean follow-up of 1097 ± 908 days, 10 544 HFs, 1317 MIs, 11 070 APs, and 5198 strokes were recorded. Compared with elevated BP/stage 1 hypertension at one-year, normal BP at one-year was associated with a lower risk of developing HF [hazard ratio (HR): 0.89, 95% CI:0.85–0.94], whereas stage 2 hypertension at one-year was associated with an elevated risk of developing HF (HR:1.43, 95% CI:1.36–1.51). This association was also present in other cardiovascular outcomes including MI, AP, and stroke. The relationship was consistent in all subgroups stratified by age, sex, baseline BP category, and overweight/obesity. Conclusion A one-year decline in BP was associated with the lower risk of HF, MI, AP, and stroke, suggesting the importance of lowering BP in individuals with elevated BP or stage 1 hypertension according to the ACC/AHA guideline to prevent the risk of developing CVD.</p
Variation in the human soluble epoxide hydrolase gene and risk of restenosis after percutaneous coronary intervention
<p>Abstract</p> <p>Background</p> <p>Restenosis represents the major limiting factor for the long-term efficacy of percutaneous coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been described to play a role in the pathogenesis of restenosis. We investigated whether the <it>EPHX2 K55R </it>polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a potential correlation of the <it>EPHX2 K55R </it>variant to an increased risk of hypertension was analysed.</p> <p>Methods</p> <p>An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls. From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.</p> <p>Results</p> <p>In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified as late lumen loss as well as lumen re-narrowing ≥ 50%.</p> <p>Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A 82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension was found.</p> <p>Conclusion</p> <p>The results of the present study indicate that the <it>EPHX2 K55R </it>polymorphism is not associated with restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not serve as a predictor for risk of CHD or restenosis after PCI.</p
The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARα In Vitro and In Vivo
Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARalpha, -beta/delta, and -gamma) nuclear receptors. In particular, PPARalpha is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARalpha mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart.Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARalpha. The CYP2J2 products 8,9- and 11-12-EET also activate PPARalpha. In vitro, PPARalpha activation by its selective ligand induces the PPARalpha target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4.Our results establish that CYP2J2 produces PPARalpha ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events
Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA
The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process
Cytochrome P450-derived eicosanoids: the neglected pathway in cancer
Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed
Islet Endothelial Activation and Oxidative Stress Gene Expression Is Reduced by IL-1Ra Treatment in the Type 2 Diabetic GK Rat
Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra)
- …