104 research outputs found

    Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice

    Get PDF
    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin — 1 surgical and the other genetic — to quantitatively track RCT following injection of [3H]-cholesterol–loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti–VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis

    Effects of sample handling and storage on quantitative lipid analysis in human serum

    Get PDF
    There is sparse information about specific storage and handling protocols that minimize analytical error and variability in samples evaluated by targeted metabolomics. Variance components that affect quantitative lipid analysis in a set of human serum samples were determined. The effects of freeze-thaw, extraction state, storage temperature, and freeze-thaw prior to density-based lipoprotein fractionation were quantified. The quantification of high abundance metabolites, representing the biologically relevant lipid species in humans, was highly repeatable (with coefficients of variation as low as 0.01 and 0.02) and largely unaffected by 1–3 freeze-thaw cycles (with 0–8% of metabolites affected in each lipid class). Extraction state had effects on total lipid class amounts, including decreased diacylglycerol and increased phosphatidylethanolamine in thawed compared with frozen samples. The effects of storage temperature over 1 week were minimal, with 0–4% of metabolites affected by storage at 4°C, −20°C, or −80°C in most lipid classes, and 19% of metabolites in diacylglycerol affected by storage at −20°C. Freezing prior to lipoprotein fractionation by density ultracentrifugation decreased HDL free cholesterol by 37% and VLDL free fatty acid by 36%, and increased LDL cholesterol ester by 35% compared with fresh samples. These findings suggest that density-based fractionation should preferably be undertaken in fresh serum samples because up to 37% variability in HDL and LDL cholesterol could result from a single freeze-thaw cycle. Conversely, quantitative lipid analysis within unfractionated serum is minimally affected even with repeated freeze-thaw cycles
    • 

    corecore