49 research outputs found

    Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: Efficient identification of known microduplications and identification of a novel microduplication in ASMT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications.</p> <p>Methods</p> <p>In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region.</p> <p>Results</p> <p>MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, <it>de novo </it>duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include <it>GABRB3 </it>and <it>ATP10A </it>in one case, and <it>MKRN3</it>, <it>MAGEL2 </it>and <it>NDN </it>in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the <it>ASPA </it>gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the <it>TM4SF2 </it>gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the <it>ASMT </it>gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6–7% of the cases but in only 2% of controls (P = 0.003).</p> <p>Conclusion</p> <p>MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new <it>de novo </it>small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in <it>TM4SF2</it> are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the <it>ASMT </it>locus indicate that further studies of the duplication of the <it>ASMT </it>gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.</p

    The NRG1 exon 11 missense variant is not associated with autism in the Central Valley of Costa Rica

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We are conducting a genetic study of autism in the isolated population of the Central Valley of Costa Rica (CVCR). A novel Neuregulin 1 (NRG1) missense variant (exon 11 G>T) was recently associated with psychosis and schizophrenia (SCZ) in the same population isolate.</p> <p>Methods</p> <p>We genotyped the NRG1 exon 11 missense variant in 146 cases with autism, or autism spectrum disorder, with CVCR ancestry, and both parents when available (N = 267 parents) from 143 independent families. Additional microsatellites were genotyped to examine haplotypes bearing the exon 11 variant.</p> <p>Results</p> <p>The NRG1 exon 11 G>T variant was found in 4/146 cases including one de novo occurrence. The frequency of the variant in case chromosomes was 0.014 and 0.045 in the parental non-transmitted chromosomes. At least 6 haplotypes extending 0.229 Mb were associated with the T allele. Three independent individuals, with no personal or family history of psychiatric disorder, shared at least a 1 megabase haplotype 5' to the T allele.</p> <p>Conclusion</p> <p>The NRG1 exon 11 missense variant is not associated with autism in the CVCR.</p

    High viral load of Merkel cell polyomavirus DNA sequences in Langerhans cell sarcoma tissues.

    Get PDF
    International audienceBACKGROUND: Langerhans cell (LC) sarcoma (LCS) is a high-grade neoplasm with overtly malignant cytologic features and an LC phenotype. We very recently suggested that LC behaves as a reservoir for common dermotropic Merkel cell polyomavirus (MCPyV) and determined the relationship between LC histiocytosis (LCH), which has an underlining oncogenic capacity, and MCPyV as a trigger for a reactive process rather than a neoplastic process. We propose LC to be a reservoir for MCPyV and hypothesize that some LCS subtypes may be related to the MCPyV agent. FINDINGS: We examined seven LCS tissues using multiplex quantitative PCR (Q-PCR) and immunohistochemistry with anti MCPyV large-T (LT) antigen antibody. High viral loads of MCPyV DNA sequences (viral load = relative levels of MCPyV) were detected (0.328-0.772 copies/cell (Merkel cell carcinoma (MCC) = 1.0)) using Q-PCR in 43% (3/7) tissues, but LT antigen expression was not observed (0/7). CONCLUSIONS: Frequent MCPyV-DNA amplification suggests that LCS in some patients may be related to MCPyV infection. Moreover, the higher viral load of LCS (median, 0.453 copies/cell) than low load of LCH (0.003, median of 12 cases) (P < 0.01) may suggest a virally induced tumorigenic process in some LCS. Although the absence of LT antigen expression may indicate a different role for MCPyV in this pathology, some subtypes of LCS may develop in the background of MCPyV-infected LC. To the best of our knowledge, this is the first report on the relationship between MCPyV and LCS. The recent discovery of MCPyV opened new therapeutic avenues for MCC. These data open novel possibilities for therapeutic interventions against LCS

    Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies

    Full text link
    corecore