30 research outputs found

    Electrical and Optical Properties of Flexible Transparent Silver Nanowires electrodes

    Get PDF
    AgNWs were produced by the one-pot polyol method, and it had been produced by reduction of AgNO3 by ethylene glycol in presence of polyvinylpyrrolidone (PVP) and KCl at high temperature of about 160 oC. AgNWs suspension were purified by centrifuging at 3000 rpm for three times then re-depressed in deionized water with a concentration of 1%. The purified suspension was diluted to different concentrations (2-5) mg. mL-1 using 1% of hydroxy methylcellulose to design different AgNWs transparent conductive films (AgNWs-TCFs). AgNWs suspension inks were coated on the glass and polyethylene terephthalate (PET) substrates. Different AgNWs diameters were obtained by changing the synthesis conditions. It has been observed that the wire diameter will greatly affect both the optical and electrical properties of the obtained AgNWs-TCFs. The best obtained AgNWs-TCFs had high transparency of about 91.5 %, small sheet resistance of about 14 .03 Ω and optical haze less than 2%, which met the requirements for the manufacture of optoelectronic and sensor equipment. Keywords: Silver nanowires, transparent conductive electrode, flexible electrodes, polyol method, AgNWs size control, AgNWs size-dependent and one-pot synthesis

    Assessment of Some Mango Species by Fruit Characters and Fingerprint

    Get PDF
    Abstract: Six local mango accessions; Zebda, Zaghloul, Gemela, Ganofia, El-Madam and ElKobbaneia were collected from private farm in Sharkia Governorate. Physical and chemical characteristics of fruits study besides of molecular characterization (as total proteins). The data showed that El-Kobbaneia fruit had the biggest fruit also El-Madam produced the smallest one. The lowest fiber percentage was clear in Ganofia fruit followed by Zebda fruit as compared with all mango fruits under study. The highest fruit Juice percentage was shown in El-Kobbaneia fruit, while Ganofia fruit had the lowest one. Also, the lowest titrable acidity was clear in Ganofia fruit, but the highest one was detected in Zebda fruit. Meanwhile, the highest total sugar was clear in Gemela fruit. However, El-Madam fruit had the lowest VC. The highest total number of variable bands (seven) was existed in Zebda species while the lowest number was presented in Ganofia species (2 bands). The percentage of polymorphism in all mango species ranged between 16.7% in both EL-Kobbaneia and Gemela species to 29.2 % in Zebda species

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Comparative Electrochemical Noise Study of the Corrosion of Different Alloys Exposed to Chloride Media

    No full text
    This paper describes the corrosion behavior of aluminum, copper, and mild steel when exposed to chloride media using both electrochemical noise analysis (ENA) and electrochemical impedance spectroscopy (EIS). Analysis of electrochemical noise (EN) data demonstrated the need for removal of drifts in both potential and current fluctuations. Statistical analysis such as noise resistance, lo-calization index, skewness and kurtosis has been evaluated. Noise resistance showed a good agreement with polarization resistance. Fast Fourier transformation (FFT) has been applied to convert EN data from the time domain to the frequency domain. Spectral noise plots showed a good agreement with impedance spectra for the different alloys determined at the same exposure time. Spectral and statistical analysis can extract useful information from EN data

    Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities

    No full text
    Abstract In this study, phosphorus (PO4 3–-P) is removed from water samples using zinc oxide nanoparticles (ZnO NPs). These nanoparticles are produced easily, quickly, and sustainably using Onion extracts (Allium cepa) at an average crystallite size of 8.13 nm using the Debye–Scherrer equation in the hexagonal wurtzite phase. The characterization and investigation of bio-synthesis ZnO NPs were carried out. With an initial concentration of 250 mg/L of P, the effects of the adsorbent dose, pH, contact time, and temperature were examined. At pH = 3 and T = 300 K, ZnO NPs achieved the optimum sorption capacity of 84 mg/g, which was superior to many other adsorbents. The isothermal study was found to fit the Langmuir model at a monolayer capacity of 89.8 mg/g, and the kinetic study was found to follow the pseudo-second-order model. The adsorption process was verified to be endothermic and spontaneous by thermodynamic characteristics. As a result of their low cost as an adsorbent and their high metal absorption, ZnO NPs were found to be the most promising sorbent in this investigation and have the potential to be used as effective sorbents for the removal of P from aqueous solutions. The antimicrobial activity results showed that ZnO NPs concentration had greater antibacterial activity than conventional Cefotaxime, which was utilized as a positive control in the inhibitory zone. However, no inhibitory zone was visible in the controlled wells that had been supplemented with onion extract and DMSO

    Electrical and Optical Properties of Flexible Transparent Silver Nanowires electrodes

    Get PDF
    AgNWs were produced by the one-pot polyol method, and it had been produced by reduction of AgNO3 by ethylene glycol in presence of polyvinylpyrrolidone (PVP) and KCl at high temperature of about 160 oC. AgNWs suspension were purified by centrifuging at 3000 rpm for three times then re-depressed in deionized water with a concentration of 1%. The purified suspension was diluted to different concentrations (2-5) mg. mL-1 using 1% of hydroxy methylcellulose to design different AgNWs transparent conductive films (AgNWs-TCFs). AgNWs suspension inks were coated on the glass and polyethylene terephthalate (PET) substrates. Different AgNWs diameters were obtained by changing the synthesis conditions. It has been observed that the wire diameter will greatly affect both the optical and electrical properties of the obtained AgNWs-TCFs. The best obtained AgNWs-TCFs had high transparency of about 91.5 %, small sheet resistance of about 14 .03 Ω and optical haze less than 2%, which met the requirements for the manufacture of optoelectronic and sensor equipment. Keywords: Silver nanowires, transparent conductive electrode, flexible electrodes, polyol method, AgNWs size control, AgNWs size-dependent and one-pot synthesis
    corecore