625 research outputs found
Interference induced metallic-like behavior of a two-dimensional hole gas in asymmetric GaAs/InGaAs/GaAs quantum well
The temperature and magnetic field dependences of the conductivity of the
heterostructures with asymmetric InGaAs quantum well are studied.
It is shown that the metallic-like temperature dependence of the conductivity
observed in the structures investigated is quantitatively understandable within
the whole temperature range, K. It is caused by the interference
quantum correction at fast spin relaxation for 0.4 K K. At higher
temperatures, 1.5 K K, it is due to the interaction quantum correction.
Finally, at K, the metallic-like behavior is determined by the phonon
scattering.Comment: 4 pages, 4 figure
On electromagnetic interactions for massive mixed symmetry field
In this paper we investigate electromagnetic interactions for simplest
massive mixed symmetry field. Using frame-like gauge invariant formulation we
extend Fradkin-Vasiliev procedure, initially proposed for investigation of
gravitational interactions for massless particles in AdS space, to the case of
electromagnetic interactions for massive particles leaving in (A)dS space with
arbitrary value of cosmological constant including flat Minkowski space. At
first, as an illustration of general procedure, we re-derive our previous
results on massive spin 2 electromagnetic interactions and then we apply this
procedure to massive mixed symmetry field. These two cases are just the
simplest representatives of two general class of fields, namely completely
symmetric and mixed symmetry ones, and it is clear that the results obtained
admit straightforward generalization to higher spins as well.Comment: 17 pages. Some clarifications added. Version to appear in JHE
Level statistics inside the core of a superconductive vortex
Microscopic theory of the type of Efetov's supermatrix sigma-model is
constructed for the low-lying electron states in a mixed superconductive-normal
system with disorder. The developed technique is used for the study of the
localized states in the core of a vortex in a moderately clean superconductor
(1/\Delta << \tau << 1/\omega_0 = E_F/\Delta^2). At sufficiently low energies E
<< \omega_{Th}, the energy level statistics is described by the
"zero-dimensional" limit of this supermatrix theory, with the effective
"Thouless energy" \omega_{Th} \sim (\omega_0/\tau)^{1/2}. Within this energy
range the result for the density of states is equivalent to that obtained
within Altland-Zirnbauer random matrix model of class C. Nonzero modes of the
sigma-model increase the mean interlevel distance \omega_0 by the relative
amount of the order of [2\ln(1/\omega_0\tau)]^{-1}.Comment: 5 pages, RevTeX. One error is corrected, also two references are
added. Submitted to JETP Letter
Local correlations of different eigenfunctions in a disordered wire
We calculate the correlator of the local density of states
in quasi-one-dimensional disordered wires
in a magnetic field, assuming that |r_1-r_2| is much smaller than the
localization length. This amounts to finding the zero mode of the
transfer-matrix Hamiltonian for the supersymmetric sigma-model, which is done
exactly by the mapping to the three-dimensional Coulomb problem. Both the
regimes of level repulsion and level attraction are obtained, depending on
|r_1-r_2|. We demonstrate that the correlations of different eigenfunctions in
the quasi-one-dimensional and strictly one-dimensional cases are dissimilar.Comment: 5 pages, 2 figures. v2: an error in treating the spatial dependence
of correlations is correcte
Energy absorption in time-dependent unitary random matrix ensembles: dynamic vs Anderson localization
We consider energy absorption in an externally driven complex system of
noninteracting fermions with the chaotic underlying dynamics described by the
unitary random matrices. In the absence of quantum interference the energy
absorption rate W(t) can be calculated with the help of the linear-response
Kubo formula. We calculate the leading two-loop interference correction to the
semiclassical absorption rate for an arbitrary time dependence of the external
perturbation. Based on the results for periodic perturbations, we make a
conjecture that the dynamics of the periodically-driven random matrices can be
mapped onto the one-dimensional Anderson model. We predict that in the regime
of strong dynamic localization W(t) ln(t)/t^2 rather than decays exponentially.Comment: 6 pages, 1 figur
On the relation between local and geometric Lagrangians for higher spins
Equations of motion for free higher-spin gauge fields of any symmetry can be
formulated in terms of linearised curvatures. On the other hand, gauge
invariance alone does not fix the form of the corresponding actions which, in
addition, either contain higher derivatives or involve inverse powers of the
d'Alembertian operator, thus introducing possible subtleties in degrees of
freedom count. We suggest a path to avoid ambiguities, starting from local,
unconstrained Lagrangians previously proposed, and integrating out the
auxiliary fields from the functional integral, thus generating a unique
non-local theory expressed in terms of curvatures.Comment: 14 pages. Contribution to the proceedings of the 1st Mediterranean
Conference on Classical and Quantum Gravity, Kolymbary (Crete, Greece)
September 14-18 200
Nernst effect as a probe of superconducting fluctuations in disordered thin films
In amorphous superconducting thin films of and ,
a finite Nernst coefficient can be detected in a wide range of temperature and
magnetic field. Due to the negligible contribution of normal quasi-particles,
superconducting fluctuations easily dominate the Nernst response in the entire
range of study. In the vicinity of the critical temperature and in the
zero-field limit, the magnitude of the signal is in quantitative agreement with
what is theoretically expected for the Gaussian fluctuations of the
superconducting order parameter. Even at higher temperatures and finite
magnetic field, the Nernst coefficient is set by the size of superconducting
fluctuations. The Nernst coefficient emerges as a direct probe of the ghost
critical field, the normal-state mirror of the upper critical field. Moreover,
upon leaving the normal state with fluctuating Cooper pairs, we show that the
temperature evolution of the Nernst coefficient is different whether the system
enters a vortex solid, a vortex liquid or a phase-fluctuating superconducting
regime.Comment: Submitted to New. J. Phys. for a focus issue on "Superconductors with
Exotic Symmetries
Thermally activated Hall creep of flux lines from a columnar defect
We analyse the thermally activated depinning of an elastic string (line
tension ) governed by Hall dynamics from a columnar defect modelled
as a cylindrical potential well of depth for the case of a small
external force An effective 1D field Hamiltonian is derived in order to
describe the 2D string motion. At high temperatures the decay rate is
proportional to with a constant of order of the
critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}}
the activation energy. The results are applied to vortices pinned by columnar
defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte
- …
