123,890 research outputs found

    A Finite Size Scaling Study of Lattice Models in the three-dimensional Ising Universality Class

    Full text link
    We simulate the spin-1/2 Ising model and the Blume-Capel model at various values of the parameter D on the simple cubic lattice. We perform a finite size scaling study of lattices of a linear size up to L=360 to obtain accurate estimates for critical exponents. We focus on values of D, where the amplitudes of leading corrections are small. Furthermore we employ improved observables that have a small amplitude of the leading correction. We obtain nu=0.63002(10), eta=0.03627(10) and omega=0.832(6). We compare our results with those obtained from previous Monte Carlo simulations and high temperature series expansions of lattice models, by using field theoretic methods and experiments.Comment: 25 pages, 6 figures, typos corrected, references added, conclusions extende

    Enabling transition into higher education for students with asperger syndrome

    Get PDF
    This project report provides an insight into the lives of students with Asperger Syndrome (AS) during their transition into higher education. It details the experiences of eight students with AS. Students were interviewed multiple times at various junctures throughout their first academic year. Although they told stories of everyday disabling barriers, they also shared experiences of academic and social successes. The project was primarily focused on students with AS; however, its findings will hopefully help inform inclusive policy and practice within higher education institutions

    Quantum nature of cosmological bounces

    Full text link
    Several examples are known where quantum gravity effects resolve the classical big bang singularity by a bounce. The most detailed analysis has probably occurred for loop quantum cosmology of isotropic models sourced by a free, massless scalar. Once a bounce has been realized under fairly general conditions, the central questions are how strongly quantum it behaves, what influence quantum effects can have on its appearance, and what quantum space-time beyond the bounce may look like. This, then, has to be taken into account for effective equations which describe the evolution properly and can be used for further phenomenological investigations. Here, we provide the first analysis with interacting matter with new effective equations valid for weak self-interactions or small masses. They differ from the free scalar equations by crucial terms and have an important influence on the bounce and the space-time around it. Especially the role of squeezed states, which have often been overlooked in this context, is highlighted. The presence of a bounce is proven for uncorrelated states, but as squeezing is a dynamical property and may change in time, further work is required for a general conclusion.Comment: 26 page

    Universal amplitude ratios in the 3D Ising Universality Class

    Full text link
    We compute a number of universal amplitude ratios in the three-dimensional Ising universality class. To this end, we perform Monte Carlo simulations of the improved Blume-Capel model on the simple cubic lattice. For example, we obtain A_+/A_-=0.536(2) and C_+/C_-=4.713(7), where A_+- and C_+- are the amplitudes of the specific heat and the magnetic susceptibility, respectively. The subscripts + and - indicate the high and the low temperature phase, respectively. We compare our results with those obtained from previous Monte Carlo simulations, high and low temperature series expansions, field theoretic methods and experiments.Comment: 18 pages, two figures, typos corrected, discussion on finite size corrections extende

    Confirming what we know: Understanding questionable research practices in intro physics labs

    Full text link
    Many institutions are changing the focus of their introductory physics labs from verifying physics content towards teaching students about the skills and nature of science. As instruction shifts, so too will the ways students approach and behave in the labs. In this study, we evaluated students' lab notes from an early activity in an experimentation-focused lab course. We found that about 30% of student groups (out of 107 groups at three institutions) recorded questionable research practices in their lab notes, such as subjective interpretations of results or manipulating equipment and data. The large majority of these practices were associated with confirmatory goals, which we suspect stem from students' prior exposure to verification labs. We propose ways for experimentation-focused labs to better engage students in the responsible conduct of research and authentic scientific practice.Comment: 4 pages, 4 figure

    Probing Hadronic Structure with The Decay Δ→Nl+l−\Delta\rightarrow Nl^+l^-

    Full text link
    We compute the branching ratio for Δ→Ne+e−\Delta\rightarrow Ne^+e^- and Δ→Nμ+μ−\Delta\rightarrow N\mu^+\mu^- in chiral perturbation theory and find that both decays should be observable at CEBAF. With sufficiently low thresholds on the e+e−e^+e^- invariant mass a branching ratio of ∼10−5\sim 10^{-5} may be observed for Δ→Ne+e−\Delta\rightarrow Ne^+e^-. For the Δ→Nμ+μ−\Delta\rightarrow N\mu^+\mu^- decay mode we predict a branching ratio of 3×10−73\times 10^{-7}. The dependence of the M1 and E2 amplitudes on the momentum transfer will provide a useful test of chiral perturbation theory which predicts ∼20%\sim 20\% variation over the allowed kinematic range.Comment: 6 pages, 3 figures, UCSD/PTH 93-06, QUSTH-93-02, Duke-TH-93-4

    Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates

    Get PDF
    We present a comprehensive theoretical study of vortex lattice formation in atomic Bose-Einstein condensates confined by a rotating elliptical trap. We consider rotating solutions of the classical hydrodynamic equations, their response to perturbations, as well as time-dependent simulations. We discriminate three distinct, experimentally testable, regimes of instability: {\em ripple}, {\em interbranch}, and {\em catastrophic}. Under symmetry-breaking perturbations these instabilities lead to lattice formation even at zero temperature. While our results are consistent with previous theoretical and experimental results, they shed new light on lattice formation.Comment: 5 pages, 2 figure
    • …
    corecore