8,329 research outputs found

    A jet-cloud interaction in 3C34 at redshift z = 0.69

    Get PDF
    We report the detection of a strong jet-cloud interaction at a distance of 120 kpc from the nucleus of the radio galaxy 3C34, which has redshift z=0.69. Hubble Space Telescope images of the radio galaxy show a long narrow region of blue emission orientated along the radio axis and directed towards a radio hotspot. The William Herschel Telescope has been used to provide long-slit spectroscopic data of this object, and infrared observations made with the United Kingdom InfraRed Telescope have enabled its spectral energy distribution to be modelled. We propose that the aligned emission is associated with a region of massive star-formation, induced by the passage of the radio jet through a galaxy within the cluster surrounding 3C34. A star-formation rate of about 100 solar masses per year is required, similar to the values necessary to produce the alignment effect in high-redshift radio galaxies. The consequences of this result for models of star formation in distant radio galaxies are discussed.Comment: 12 pages including 11 figures, LaTeX. To appear in MNRA

    HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ~ 1: I. The observations

    Get PDF
    Hubble Space Telescope images are presented of a sample of 28 3CR radio galaxies with redshifts in the range 0.6 < z < 1.8, together with maps at comparable angular resolution of their radio structure, taken using the Very Large Array. Infrared images of the fields, taken with the United Kingdom InfraRed Telescope, are also presented. The optical images display a spectacular range of structures. Many of the galaxies show highly elongated optical emission aligned along the directions of the radio axes, but this is not a universal effect; a small number of sources are either symmetrical or misaligned. Amongst those sources which do show an alignment effect, the morphology of the optical emission varies greatly, from a single bright elongated emission region to strings of optical knots stretching from one radio hotspot to the other. The infrared images display much less complexity. Although their significantly lower angular resolution would wash out some of the smaller structures seen in the HST images, it is clear that these galaxies are less aligned at infrared wavelengths than in the optical. In this paper, we discuss the galaxies individually, but defer a statistical analysis of the multi-waveband properties of the complete sample of sources to later papers in this series.Comment: 39 pages including 52 figures, LaTeX. Accepted for publication in MNRA

    The final two redshifts for radio sources from the equatorial BRL sample

    Full text link
    Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful radio sources from the Molonglo Reference Catalogue, for which redshifts were compiled or measured for 177 of the 178 objects. For the final object, MRC1059-010 (3C249), the host galaxy is here identified using near-infrared imaging, and the redshift is determined from VLT spectroscopy. For one other object in the sample, MRC0320+053 (4C05.14), the literature redshift has been questioned: new spectroscopic observations of this object are presented, deriving a corrected redshift. With these two results, the spectroscopic completeness of this sample is now 100%. New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7 GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10 shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA
    corecore