10,679 research outputs found

    Single electron capacitance spectroscopy of vertical quantum dots using a single electron transistor

    Full text link
    We have incorporated an aluminum single electron transistor (SET) directly on top of a vertical quantum dot, enabling the use of the SET as an electrometer that is extremely responsive to the motion of charge into and out of the dot. Charge induced on the SET central island from single electron additions to the dot modulates the SET output, and we describe two methods for demodulation that permit quantitative extraction of the quantum dot capacitance signal. The two methods produce closely similar results for the determined single electron capacitance peaks.Comment: Submitted to Applied Physics Letters (reformatted to fit correctly on a page

    Spin Diffusion and Relaxation in a Nonuniform Magnetic Field

    Full text link
    We consider a quasiclassical model that allows us to simulate the process of spin diffusion and relaxation in the presence of a highly nonuniform magnetic field. The energy of the slow relaxing spins flows to the fast relaxing spins due to the dipole-dipole interaction between the spins. The magnetic field gradient suppresses spin diffusion and increases the overall relaxation time in the system. The results of our numerical simulations are in a good agreement with the available experimental data.Comment: 11 pages and 6 figure

    Accelerator dynamics of a fractional kicked rotor

    Full text link
    It is shown that the Weyl fractional derivative can quantize an open system. A fractional kicked rotor is studied in the framework of the fractional Schrodinger equation. The system is described by the non-Hermitian Hamiltonian by virtue of the Weyl fractional derivative. Violation of space symmetry leads to acceleration of the orbital momentum. Quantum localization saturates this acceleration, such that the average value of the orbital momentum can be a direct current and the system behaves like a ratchet. The classical counterpart is a nonlinear kicked rotor with absorbing boundary conditions.Comment: Submitted for publication in Phys. Rev.

    Suppression of Intensity Fluctuations in Free Space High-Speed Optical Communication Based on Spectral Encoding of a Partially Coherent Beam

    Get PDF
    A new concept of a free-space, high-speed (Gbps) optical communication system based on spectral encoding of radiation from a broadband pulsed laser is developed. It is shown that, in combination with the use of partially coherent laser beams and a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. We also consider the spectral encoding of radiation from a LED as a gigabit rate solution of the "last mile" problem and rapid-deployment systems for disaster recovery.Comment: 16 pages, 2 figure

    Fluctuating Fronts as Correlated Extreme Value Problems: An Example of Gaussian Statistics

    Full text link
    In this paper, we view fluctuating fronts made of particles on a one-dimensional lattice as an extreme value problem. The idea is to denote the configuration for a single front realization at time tt by the set of co-ordinates {ki(t)}[k1(t),k2(t),...,kN(t)(t)]\{k_i(t)\}\equiv[k_1(t),k_2(t),...,k_{N(t)}(t)] of the constituent particles, where N(t)N(t) is the total number of particles in that realization at time tt. When {ki(t)}\{k_i(t)\} are arranged in the ascending order of magnitudes, the instantaneous front position can be denoted by the location of the rightmost particle, i.e., by the extremal value kf(t)=max[k1(t),k2(t),...,kN(t)(t)]k_f(t)=\text{max}[k_1(t),k_2(t),...,k_{N(t)}(t)]. Due to interparticle interactions, {ki(t)}\{k_i(t)\} at two different times for a single front realization are naturally not independent of each other, and thus the probability distribution Pkf(t)P_{k_f}(t) [based on an ensemble of such front realizations] describes extreme value statistics for a set of correlated random variables. In view of the fact that exact results for correlated extreme value statistics are rather rare, here we show that for a fermionic front model in a reaction-diffusion system, Pkf(t)P_{k_f}(t) is Gaussian. In a bosonic front model however, we observe small deviations from the Gaussian.Comment: 6 pages, 3 figures, miniscule changes on the previous version, to appear in Phys. Rev.

    Quantum search using non-Hermitian adiabatic evolution

    Full text link
    We propose a non-Hermitian quantum annealing algorithm which can be useful for solving complex optimization problems. We demonstrate our approach on Grover's problem of finding a marked item inside of unsorted database. We show that the energy gap between the ground and excited states depends on the relaxation parameters, and is not exponentially small. This allows a significant reduction of the searching time. We discuss the relations between the probabilities of finding the ground state and the survival of a quantum computer in a dissipative environment.Comment: 5 pages, 3 figure

    The Fermi-Pasta-Ulam problem: 50 years of progress

    Full text link
    A brief review of the Fermi-Pasta-Ulam (FPU) paradox is given, together with its suggested resolutions and its relation to other physical problems. We focus on the ideas and concepts that have become the core of modern nonlinear mechanics, in their historical perspective. Starting from the first numerical results of FPU, both theoretical and numerical findings are discussed in close connection with the problems of ergodicity, integrability, chaos and stability of motion. New directions related to the Bose-Einstein condensation and quantum systems of interacting Bose-particles are also considered.Comment: 48 pages, no figures, corrected and accepted for publicatio

    Quantum matter wave dynamics with moving mirrors

    Full text link
    When a stationary reflecting wall acting as a perfect mirror for an atomic beam with well defined incident velocity is suddenly removed, the density profile develops during the time evolution an oscillatory pattern known as diffraction in time. The interference fringes are suppressed or their visibility is diminished by several effects such as averaging over a distribution of incident velocities, apodization of the aperture function, atom-atom interactions, imperfect reflection or environmental noise. However, when the mirror moves with finite velocity along the direction of propagation of the beam, the visibility of the fringes is enhanced. For mirror velocities below beam velocity, as used for slowing down the beam, the matter wave splits into three regions separated by space-time points with classical analogues. For mirror velocities above beam velocity a visibility enhancement occurs without a classical counterpart. When the velocity of the beam approaches that of the mirror the density oscillations rise by a factor 1.8 over the stationary value.Comment: 5.2 pages, 6 figure
    corecore