39 research outputs found
P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism
P73 is important in drug-induced apoptosis in some cancer cells, yet its role in the regulation of chemosensitivity in ovarian cancer (OVCA) is poorly understood. Furthermore, if and how the deregulation of p73-mediated apoptosis confers resistance to cisplatin (CDDP) treatment is unclear. Here we demonstrate that TAp73α over-expression enhanced CDDP-induced PARP cleavage and apoptosis in both chemosensitive (OV2008 and A2780s) and their resistant counterparts (C13* and A2780cp) and another chemoresistant OVCA cells (Hey); in contrast, the effect of ΔNp73α over-expression was variable. P73α downregulation attenuated CDDP-induced PUMA and NOXA upregulation and apoptosis in OV2008 cells. CDDP decreased p73α steady-state protein levels in OV2008, but not in C13*, although the mRNA expression was identical. CDDP-induced p73α downregulation was mediated by a calpain-dependent pathway. CDDP induced calpain activation and enhanced its cytoplasmic interaction and co-localization with p73α in OV2008, but not C13* cells. CDDP increased the intracellular calcium concentration ([Ca2+]i) in OV2008 but not C13* whereas cyclopiazonic acid (CPA), a Ca2+-ATPase inhibitor, caused this response and calpain activation, p73α processing and apoptosis in both cell types. CDDP-induced [Ca2+]i increase in OV2008 cells was not effected by the elimination of extracellular Ca2+, but this was attenuated by the depletion of internal Ca2+ store, indicating that mobilization of intracellular Ca2+] stores was potentially involved. These findings demonstrate that p73α and its regulation by the Ca2+-mediated calpain pathway are involved in CDDP-induced apoptosis in OVCA cells and that dysregulation of Ca2+/calpain/p73 signaling may in part be the pathophysiology of CDDP resistance. Understanding the cellular and molecular mechanisms of chemoresistance will direct the development of effective strategies for the treatment of chemoresistant OVCA
NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin
Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy
Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p
Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.</p
Oncolytic virotherapy for pancreatic ductal adenocarcinoma: A glimmer of hope after years of disappointment?
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and highly lethal malignancies. Existing therapeutic interventions have so far been unsuccessful in improving prognosis, and survival remains very poor. Oncolytic virotherapy represents a promising, yet not fully explored, alternative strategy for the treatment of PDAC. Oncolytic viruses (OVs) infect, replicate within and lyse tumor cells specifically and stimulate antitumor immune responses. Multiple challenges have hampered the efficacy of oncolytic virotherapy for PDAC, the most significant being the desmoplastic and immunosuppressive pancreatic tumor microenvironment (TME). The TME limits the access of therapeutic drugs and the infiltration of effector T cells and natural killer (NK) cells into the tumor mass. Additionally, cancer cells promote the secretion of immunosuppressive factors and develop mechanisms to evade the host immune system. Because of their oncolytic and immune-stimulating properties, OVs are the ideal candidates for counteracting the pancreatic immunosuppressive TME and for designing combination therapies that can be clinically exploited in clinical trials that seek to improve the prognosis of PDAC.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
CD28 ligation in the absence of TCR promotes RelA/NF-kB recruitment and trans-activation of the HIV-1 LTR
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. CD28 can act as a TCR-independent signalling unit by delivering specific signals which may induce HIV transcription and replication. However, the mechanisms by which CD28 regulates HIV expression remain largely unknown. Here we show that the TCR-independent CD28 signals lead to the trans-activation of HIV-1 LTR in an NF-kappaB-dependent manner. In particular, we found that CD28 engagement by B7 induces the specific recruitment of RelA/NF-kappaB subunit to the HIV-1 LTR promoter both in vitro and in ex vivo infected cells. The results obtained by mutating specific tyrosine residues within the CD28 cytoplasmic tail as well as by using LY294002 inhibitory drug evidenced that the recruitment and activation of the phosphatidylinositol 3-kinase/Akt signalling pathway is crucial in mediating CD28-induced HIV transcription through RelA/NF-kappaB
The global impact of the coronavirus pandemic
The coronavirus pandemic has engulfed the nations of the world for the first five months of 2020 and altered the pace, fabric and nature of our lives. In this overview accompanying the Special Issue of Cytokine & Growth Factor Reviews, we examine some of the many social and scientific issues impacted by SARS-CoV2 - personal lives, economy, scientific communication, the environment. International members of Istituto Pasteur in Rome and INITIATE, the Marie Curie Training Network reflect on the lasting global impact of the coronavirus pandemic.Medical Microbiolog
Trichostatin A up-regulates p73 and induces Bax-dependent apoptosis in cisplatin-resistant ovarian cancer cells
Several studies in the last years evidenced that deregulation of proapoptotic and antiapoptotic pathways are key players in the onset and maintenance of chemoresistance in advanced ovarian cancers. To characterize the signaling events and molecules involved in the acquisition of cisplatin resistance, we used the human ovarian cancer cell line A2780 and its derivative cisplatin-resistant subline A2780 CIS. We found that the mitochondrial intrinsic apoptotic pathway, induced by cis-dichlorodiammineplatinum (CDDP) in A2780 wild-type cells, was compromised in the resistant subline CIS. The analysis of expression of proteins involved in mitochondria-dependent apoptosis revealed a role of Bax and p73 but not p53. Indeed, we found that CDDP treatment induced the up-regulation of p53 in both sensitive and resistant A2780 cell lines. By contrast, p73 and Bax expressions were compromised in resistant cells. Pretreatment of resistant A2780 CIS cells with the histone deacetylase inhibitor trichostatin A overcomes apoptosis resistance to CDDP by restoring both p73 and Bax but not p53 expression. Altogether, these data indicate that p73, but not p53, is involved in the regulation of apoptosis susceptibility to cisplatin in A2780 ovarian cancer cells and evidence a key contribution of histone deacetylase activation in the acquisition of chemotherapy resistance in human ovarian cancer cells
RelA/NF-kappa B recruitment on the bax gene promoter antagonizes p73-dependent apoptosis in costimulated T cells
The balance between antiapoptotic and proapoptotic proteins of the Bcl-2 family is critical in determining the fate of T cells in response to death stimuli. Proapoptotic genes, such as bax, are generally regulated by the p53 family of transcription factors, whereas NF-kappa B subunits can activate the transcription of antiapoptotic Bcl-2 members. Here, we show that CD28 activation protects memory T cells from irradiation-induced apoptosis by both upregulating bcl-xL and inhibiting bax gene expression. We found that p73, but not p53, binds to and trans-activates the bax gene promoter in irradiated T cells. The activation of RelA/NF-kappa B subunit in CD28 costimulated T cells and its binding onto the bax gene promoter results in suppression of bax transcription and decrease in both p73 and RNA polymerase II recruitment in vivo. RelA recruitment on the bax gene promoter is also accompanied by the lost of p300 binding and the parallel appearance of histone deacetylase-1-containing complexes. These findings identify RelA/NF-kappa B as a critical regulator of T-cell survival by affecting the balance of Bcl-2 family members
Phosphatidylinositol 4-Phosphate 5-Kinase \u3b1 and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions.
Phosphatidylinositol 4,5-biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4(+) T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions
