1,268 research outputs found

    Blazar Flaring Patterns (B-FlaP): Classifying Blazar Candidates of Uncertain type in the third Fermi-LAT catalog by Artificial Neural Networks

    Get PDF
    The Fermi Large Area Telescope (LAT) is currently the most important facility for investigating the GeV γ\gamma-ray sky. With Fermi LAT more than three thousand γ\gamma-ray sources have been discovered so far. 1144 (∼40%\sim40\%) of the sources are active galaxies of the blazar class, and 573 (∼20%\sim20\%) are listed as Blazar Candidate of Uncertain type (BCU), or sources without a conclusive classification. We use the Empirical Cumulative Distribution Functions (ECDF) and the Artificial Neural Networks (ANN) for a fast method of screening and classification for BCUs based on data collected at γ\gamma-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as FSRQs, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogs and because blazars and in particular their subclass High Synchrotron Peak (HSP) objects are the main targets of atmospheric Cherenkov telescopes.Comment: 18 pages, 17 figures, accepted for publication on MNRA

    Optical counterparts of undetermined type γ\gamma-ray Active Galactic Nuclei with blazar-like Spectral Energy Distributions

    Full text link
    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 γ\gamma-ray sources above a 4σ\sigma significance level. Although most of the extra-Galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections (∼30%\sim 30\%) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN γ\gamma-ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet that, in the case of blazars, is oriented very close to our line of sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with γ\gamma-rays, providing a much better source localization potential, we focused our attention on a sample of γ\gamma-ray Blazar Candidates of Undetermined Type (BCUs), starting a campaign of optical spectroscopic observations. The main aims of our investigation include a census of the AGN families that contribute to γ\gamma-ray emission and a study of their redshift distribution, with the subsequent implications on the intrinsic source power. We furthermore analyze which γ\gamma-ray properties can better constrain the nature of the source, thus helping in the study of objects not yet associated with a reliable low frequency counterpart. In this communication we report on the instruments and techniques used to identify the optical counterparts of γ\gamma-ray sources, we give an overview on the status of our work, and we discuss the implications of a large scale study of γ\gamma-ray emitting AGNs.Comment: 9 pages, 2 figures, proceedings of the 10th Serbian Conference on Spectral Line Shapes in Astrophysics. JOAA, accepte

    A spectroscopic analysis of a sample of narrow-line Seyfert 1 galaxies selected from the Sloan Digital Sky Survey

    Get PDF
    We revisited the spectroscopic characteristics of narrow-line Seyfert 1 galaxies (NLS1s) by analysing a homogeneous sample of 296 NLS1s at redshift between 0.028 and 0.345, extracted from the Sloan Digital Sky Survey (SDSS-DR7) public archive. We confirm that NLS1s are mostly characterized by Balmer lines with Lorentzian profiles, lower black hole masses and higher Eddington ratios than classic broad-line Seyfert 1 (BLS1s), but they also appear to be active galactic nuclei (AGNs) contiguous with BLS1s and sharing with them common properties. Strong Fe II emission does not seem to be a distinctive property of NLS1s, as low values of Fe II/Hβ\beta are equally observed in these AGNs. Our data indicate that Fe II and Ca II kinematics are consistent with the one of Hβ\beta. On the contrary, O I λ\lambda8446 seems to be systematically narrower and it is likely emitted by gas of the broad-line region more distant from the ionizing source and showing different physical properties. Finally, almost all NLS1s of our sample show radial motions of the narrow-line region highly-ionised gas. The mechanism responsible for this effect is not yet clear, but there are hints that very fast outflows require high continuum luminosities (> 104410^{44} erg/s) or high Eddington ratios (log(Lbol_{\rm bol}/LEdd_{\rm Edd}) > -0.1).Comment: 27 pages, 31 figures, 4 tables, accepted for publication in MNRA

    [O III] line properties in two samples of radio-emitting narrow-line Seyfert 1 galaxies

    Get PDF
    The [O III] λλ\lambda\lambda 4959,5007 lines are a useful proxy to test the kinematic of the narrow-line region (NLR) in active galactic nuclei (AGN). In AGN, and particularly in narrow-line Seyfert 1 galaxies (NLS1s) these lines often show few peculiar features, such as blue wings, often interpreted as outflowing component, and a shift −- typically toward lower wavelengths −- of the whole spectroscopic feature in some exceptional sources, the so-called blue outliers, which are often associated to strong winds. We investigated the incidence of these peculiarities in two samples of radio-emitting NLS1s, one radio-loud and one radio-quiet. We also studied a few correlations between the observational properties of the [O III] lines and those of the AGN. Our aim was to understand the difference between radio-quiet and radio-loud NLS1s, which may in turn provide useful information on the jet formation mechanism. We find that the NLR gas is much more perturbed in radio-loud than in radio-quiet NLS1s. In particular the NLR dynamics in γ\gamma-ray emitting NLS1s appears to be highly disturbed, and this might be a consequence of interaction with the relativistic jet. The less frequently perturbed NLR in radio-quiet NLS1s suggests instead that these sources likely do not harbor a fully developed relativistic jet. Nonetheless blue-outliers in radio-quiet NLS1s are observed, and we interpret them as a product of strong winds.Comment: 16 pages, 13 figures, 7 tables, accepted for publication on Astronomy & Astrophysic

    High resolution spectroscopy of the extended narrow-line region of IC 5063 and NGC 7212

    Full text link
    We studied the properties of the gas of the extended narrow line region (ENLR) of two Seyfert 2 galaxies: IC 5063 and NGC 7212. We analysed high resolution spectra to investigate how the main properties of this region depend on the gas velocity. We divided the emission lines in velocity bins and we calculated several line ratios. Diagnostic diagrams and SUMA composite models (photo-ionization + shocks), show that in both galaxies there might be evidence of shocks significantly contributing in the gas ionization at high |V|, even though photo-ionization from the active nucleus remains the main ionization mechanism. In IC 5063 the ionization parameter depends on V and its trend might be explained assuming an hollow bi-conical shape for the ENLR, with one of the edges aligned with the galaxy disk. On the other hand, NGC 7212 does not show any kind of dependence. The models show that solar O/H relative abundances reproduce the observed spectra in all the analysed regions. They also revealed an high fragmentation of the gas clouds, suggesting that the complex kinematics observed in these two objects might be caused by interaction between the ISM and high velocity components, such as jets.Comment: 29 pages, 32 figures, accepted for publication in MNRA

    Parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    Get PDF
    Flat-spectrum radio-loud Narrow-Line Seyfert 1 galaxies (NLS1s) are a recently discovered class of γ\gamma-ray emitting Active Galactic Nuclei (AGN), that exhibit some blazar-like properties which are explained with the presence of a relativistic jet viewed at small angles. When blazars are observed at larger angles they appear as radio-galaxies, and we expect to observe an analogue parent population for beamed NLS1s. However, the number of known NLS1s with the jet viewed at large angles is not enough. Therefore, we tried to understand the origin of this deficit. Current hypotheses about the nature of parent sources are steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. To test these hypotheses we built three samples of candidate sources plus a control sample, and calculated their black hole mass and Eddington ratio using their optical spectra. We then performed a Kolmogorov-Smirnov statistical test to investigate the compatibility of our different samples with a beamed population. Our results indicate that, when the inclination angle increases, a beamed source appears as a steep-spectrum radio-loud NLS1, or possibly even as a disk-hosted radio-galaxy with low black hole mass and high Eddington ratio. Further investigations, involving larger complete samples and observations at radio frequency, are needed to understand the incidence of disk-hosted radio-galaxies in the parent population, and to assess whether radio-quiet NLS1s can play a role, as well.Comment: 12 pages, 6 figures, accepted for publication by Astronomy and Astrophysic

    Observers of quantum systems cannot agree to disagree

    Get PDF
    Is the world quantum? An active research line in quantum foundations is devoted to exploring what constraints can rule out the postquantum theories that are consistent with experimentally observed results. We explore this question in the context of epistemics, and ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world. Aumann's seminal Agreement Theorem states that two observers (of classical systems) cannot agree to disagree. We propose an extension of this theorem to no-signaling settings. In particular, we establish an Agreement Theorem for observers of quantum systems, while we construct examples of (postquantum) no-signaling boxes where observers can agree to disagree. The PR box is an extremal instance of this phenomenon. These results make it plausible that agreement between observers might be a physical principle, while they also establish links between the fields of epistemics and quantum information that seem worthy of further exploration.Comment: Close to published versio

    Exploring the parent population of beamed NLS1s: from the black hole to the jet

    Full text link
    The aim of this work is to understand the nature of the parent population of beamed narrow-line Seyfert 1 galaxies (NLS1s), by studying the physical properties of three parent candidates samples: steep-spectrum radio-loud NLS1s, radio-quiet NLS1s and disk-hosted radio-galaxies. In particular, we focused on the black hole mass and Eddington ratio distribution and on the interactions between the jet and the narrow-line region.Comment: 6 pages, 2 figures, to appear in Proceedings of High Energy Phenomena in Relativistic Outflows (HEPRO) V, Workshop Series of the Argentinian Astronomical Societ
    • …
    corecore